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This thesis deals with Leader-Follower and Nash differential
games with state information. The main topics considered are the following:
conditions for existence of closed-loop Nash strategies in linear quadratic
differential games; necessary conditions for Leader-Follower differential
games where the leader has current state information; sufficient conditions
for Leader-Follower and Nash differential games with memory; conditions for
existence, uniqueness as well as methods for finding the solution for some

classes of stochastic Nash games.
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CHAPTER 1

INTRODUCTION

1l.1. Motivation and Ceneral Background

The present thesis deals with certain topics in the area of Nash
and Leader-Fallower dynamic games with state information available to the
players. Our motivation for this study was the belief that game theory
provides formalisms and results which are useful in describing,understanding
and manipulating successfully large scale and hierarchical engineering
systems., Hierarchical and large scale systems have received considerable
attention during the last few years; firstly because of their importance

in engineering, economics and other areas, and secondly because of the

“increased capability of computer facilities [37], [38). An important

characteristic of many large scale systems is the presence of many decision
makers with different and usually conflicting goals. The existence of many
decision makers who interact through the system and have different goals may
be an inherent property of the system under comsideration (e.g., a market

situation), or may be simply the result of modeling the system as such (e.x.,

a large system decomposed to subsystems for calculation purposes)., Differential

games are useful in modeling and studying dynamic systems where more than
one decision maker is involved. Most of the questions posed in the area of
the classical control problem may be considered in a game situation, but
their resolution is generally more difficult. In addition, many questions
can be posed in a game framework, which are meaningless or trivial in a
classical control problem framework. The superior conceptual wealth of game

over control problems, which makes them potentially much more applicable,




counterbalances the additional difficulties encountered in their solution.
The theory of games achieved its maturity as a field of active
research basically due to John von Neumann. The publication of the book
"Theory of Games and Economic Behavior" by J. V. Neumann and O. Morgenstern
[66], gave the impetus for research in Game Theory. Although the theory of
games was initially appealing almost exclusively to some Economists, it's
usefulness in applications and challenge as anarea of research is today
recognized by many Engineers, Mathematicians, Economists, Sociologists,
Psychologists and Political Scientists. The attention of the researchers
was initially almost exclusively focused on static two-player, zero-sum games.
Rufus Isaacs by imposing a certain type of structure to the sets and the
functions describing a two-player, zero-sum gaﬁe.in it's abstract general
form established the area of two-player, zero-sum differential games, [67].
In the literature, the characterization'static'" isusually attributed to games
which are presented so as to have suppressed in the final formalism any
explicit dependence on the evolution of time, The characterization "“dynamic"
is attributed to games where evolution of time is not suppressed in the final
formalism with which the game is presented. The difference between static
and dynamic games lies mostly in the way that we choose to state the game,
since every dynamic game can be stated equivalently as a static one. (The
discussion on normal and extensive form of a game, see [66], is pertinent
here). Nonetheless by adopting a static game theoritic description of a
certain problem, in which problem the evolution of time is present, we hide
a lot of the underlying concepts which are related to the evolution of time

and might be useful in posing and studying questions about the game as well
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as in interpreting several theoretical results. Dynamic games are usually
described by differential of difference equations (deterministic or stochastic)
and the term differential games is usually reserved for the former description.
The present thesis deals with dynamic games with more emphasis on the differen-
tial ones.

The two particular types of games which are of interest here are
the so called Nash differential games and Leader-Follower (LF) differential
games, see [l] and [33] respectively., The general definitions of Nash and

LF games are as follows. Let U, V be two sets and Jl, J2 two functions
UxV—R, 1i=1,2, (L.1)

Jl, J2 are referred to as the cpsts and U, V as the strategy spaces of

<

players 1 and 2 respectively.

-

Definition of a Nash Equilibrium: A pair (u*, v¥) €UxV is called a Nash

equilibrium pair if (u*,v¥) satisfies
Jl(u*,v*) = Jl(u,v*), Vu€u
(1.2)
Jz(u*,v*) < Jz(u*,v), Vvev,

To define an LF equilibrium pair we need first to define a mapping T.

Consider the set valued mapping T

defined by

Tu={v|v=arg inf[J,(u,V); VEV]}.




S iad S

Clearly Tu=¢ if the inf is not achieved. We also consider the minimization

problem

inf Jl(u,v)

e e e

(1.5)
subject to: u€U, VE&Tu,

where we use the usual convention Jl(u,v) =+ if vE€Tu=gp.

Definition of an LF equilibrium: A pair (u*,v*) €UxV is called a Stackel-

berg equilibrium pair if (u*,v*) solves (l). (In LF games it is standard

to say that a leader chooses u €U and has cost Jl and a follower chooses

v €V and has cost Jz).

I1f we are interested in a Nash equilibrium we say that we have a Nash game
and if we are interested in an LF equilibrium we say that we have an LF
game. Notice that we do not ask that Jl-+J2 =0, i.e, we are dealing with
nonzero-~sum games,

Nash games provide a formalism for describing situations of conflict
where player 1 chooses ué€U, player 2 chooses vE€V, player 1 is interested
in minimizing his cost Jl, player 2 is interested in minimizing his cost J2
and the two players do not trust each other and do not cooperate. Nonetheless, %
each one assumes for the other that he will act in a rational way and try to
satisfy (1.2). LF games provide a formalism for describing the following
situation. The follower tries to minimize his cost J, for a given choice of

u € U by the leader. The leader whose interest is to minimize Jl, knowing

the follower's rational and having the privilege to choose his strategy first,
wishes to announce a u*cU, such that together with the follower's reaction v* to

u*, will result to the minimum possible J Notice that in LF games the

1°
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leader chooses and declares his u first i,e, there is a hierarchy in the
decision making in contrast with Nash games where the players choose and
declare their choices simultaneously. Notice also that in a Nash game both

players must know U,V,J J2 while in an LF game the leader must know U,V,J

l!
J2 and the follower must know u*,V and J

1?
2

Nash games were first introduced and studied in a static framework
by J. Nash [68]. The dynamic version of Nash games was first introduced and
studied by Starr and Ho [1]. LF games was first introduced by von Stackel-
berg [26], who studied a simple static game in a .inite dimensional framework.
The dynamic version of LF games was first introduced and studied by Chen and
Cruz and Simaan and Cruz, [27-29]. The introduction of Nash and LF dynamic
games was motivated significartly by R. Isaacs work [67] on two-person, zero-
sum dynamic games.

In order to describe Nash and LF two-player differential games we

consider the state equation

k(t) = £(x(t),u(t),v(t),t), x(t)) =x , €[t ,t.]  (1.6)

and the cost functionals

t
£ :
J,(u,v) = g (x(t,)) + {:OLi(x(,t),E(t),;(t),t)dt, i=1,2, (1.7)

m m

where x(t)ER®, G(t)ER 1, T(t)ER 2

and £, Li’ g; are functions with appropriate
domains, and ranges in Rn, R}, Rl respectively and satisfy certain continuity
and differentiability assumptions. Also u€lU, vE€EV where U and V are defined
below and u(t), v(t) are the values of u and v respectively, at time t, At

each instant of time t player 1 has a certain information about the previous

values of the trajectory and the previous values of his oppoment’s control

sudbiak 2
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values, i.e, about X, and ;t' More precisely, at time t, player 1 knows

Il(xt;;t,t) see (1.9). Before player 1 chooses his u, he only knows the

function Il. Similarly player 2 knows a function 12 which means that at time

t we will know Iz(xt,;t,t), At the beginning of the game the players choose

functions u and v and substitute u(Il(xt,; >t)), v(Iz(xt;ﬁt,t)), in the

t

place of‘E(t),A;(t) in the state equation and the cost functionals. The

differential equation

R(t) = £(x(t), ully (x ,v,,t),v(T,(x 50, ,t),t)
x(t ) = x s tE[T ,t.] (1.8)

is solved where

x, = {x(]t, <t <t}
-Jt = {U(Il(XT,—\_f-T,T),T)ltO <1<t} (1.9)
;g = {V(IZ(XT’;;’T)’T)Ito € 1< ¢t}

and the u,v are fixed. Assuming that the solution of (1.8) exists and is
unique, call it x(t;u,v) we can calculate the values of the cost functionals

which will depend on u and v, The functions I their images and the

1h
possible continuity differentiabily and image assumptions on u and v deter-
mine U and V. For example, if Ii(a,B,Y) = (a(to),Y), i=1,2, i,e., both
players have no information except knowledge of the current instant of time t
and x, we can consider U, V to be sets of piecewise continuous function of

time which depend also on X This case is called open-loop. Another example

is to choose Il’ 12 such that the players know at each instant of time t,

the triple {xo,x(t),t}. Notice that in general, I1 and I2 have function spaces




as domains and images., For the set up of this paragraph the definitions of

Nash and LF games are those given before,

In the case where (1,6) is substituted by a stochastic differential
equation and expectation is taken of the cost functionals (1,7), we say that
we have a stochastic differential game. Also, we can substitute (1.6) by a
difference (stochastic or not) equation, and consider summations (with
expectation in front), in place of the integral cost functionals (1.7).

We can pose several questions about the differential game described

above., For example, for given Il,IZ, we can study existence and uniqueness
of solutions and necessary and sufficient conditions for a pair (u*,v*) to

be an equilibrium (Nash or LF) pair. We can also investigate the dependence
of an equilibrium pair and of the resulting costs on I1 and Iz. These and
many other questions which have been posed elsewhere are difficult to study.
The case where Ii(a,s,y) = (a(to),y), i=1,2 is easier and there are several
results about it. 1In the present thesis we will try to answer questions on
existence, ;niqueness and characterization by necessary and sufficient condi-

tions for cases where Il,I2 are such that provide information about the

current and the previous values of the state to the players.

1.2, OQutline of the Thesis

In the rest of the introduction we give a general outline of the
results of the present work and relate them to already existing ones. 3

In Chapter 2 we deal with Nash two-player differential games,
where (1,6) is linear in x, E, Vv and the costs (1.7) are quadratic, i.e,

with linear quadratic Nash games,except in the Section 2.4 where nonlinear




f and gl’gZ’Ll’LZ are also considered., The information available to each
player at time t is x(t) and t and we call this case closed loop, The Nash
solution for linear quadratic games has been studied in several papers, see
[1-10]. Despite the many results available in this area, those concerning
existence and uniqueness of optimal strategies are far from being satisfac-
tory. This holds true especially if the strategies take into account infor-
mation about the present and past values of the state of the system. 1In
this context {61, [17], [18] can be pointed out. In these papers, the non-
uniqueness of the Nash equilibrium strategies was demonstrated when the
current state x(t) and the initial state X, are available to at least one of
the players. It was also shown that in the case of discrete-time linear
quadratic games, under invertibility conditions of cé:;ain matrices,

if noise is introduced to the state equation, then the Nash equilibrium
strategies linear in the current state x(t) (assuming they exist) are the
unique solution without restricting a priori the admissible strategies to be
linear in the current state. The closed loop Nash strategies are not neces-
sarily linear [6], and even if restriction to linear strategies is made, still
little is known concerning their existence, properties, interpretation in
terms of solutions to the coupled Riccati equations, and the stability

of the closed loop system. For the linear quadratic game over a finite
period of time [0,T], there are certain existence results for closed loop
Nash strategies, assuming that T is sufficiently small and/or that the strate-
gies lie in compact subsets of the admissible strategy spaces [3], [7], [8].
In [2], [5] the boundedness of the solutions of certain Riccati type differ-
ential equations is assumed in order to guarantee the existence of Nash

strategies, Finally, (15] deals with the static N-person Nash game, under




compactness and convexity assumptions for the strategy spaces and concavity
assumptions for the criteria, Chapter 2 contains three sections, In Sec-
tion 2.2 we deal with existence of Nash equilibria which are linear in x(t),
the time interval is [0,») and all the matrices involved in the description
of the state equation and cost functionals are constant, For this case there
was no existence result available known to us. Although our results do not

solve the problem completely they are applicable to a subclass of problems.

They are stated in terms of conditions on the norms of the matrices involved
and they do not depend on controllability or observability assumptions. They
can be viewed as conditions for solution of certain coupled algebraic Riccati
type matrix equations. We derive our basic existence result by using Brouwer's
. Fixed Point Theorem in a way which disengages our result from a local character
that a straightforward application of Brouwer's Theorem would impose. The
generalization of our results to the N-player case is obvious, It should be
pointed out that for many of the conditions presented no assumptions of con-
trollability, observability or semidefiniteness are made, Therefore we
actually single out a region of parameter space (A’Bi'Qi’Rij) where in the

existence of solutions does not depend on controllability and observability.

This region is necessarily contained in the region where A is asymptotically

stable, or is the neighborhood of a parameter point for which a solution of
an auxiliary control problem exists, Outside this region the existence of
solutions will depend in general on controllability and observability proper-
ties, but presently conditions under which existence can be guaranteed are
not known. Finally as a byproduct of the use of Brouwer's Theorem we in-
terpret some existing results about the algebraic Riccati equation of the

control problem in a new way, see Remark iii in 2.1.3. In Section 2.2 we
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consider a Linear Quadratic Nash Game over a finite period of time [0,T].

The matrices involved are piecewise continuous functions of time, The
existence of linear closed loop Nash strategies depends on the existence of
continuous solutions to an associated system of two coupled Riccati differen-
tial equations over [0,T]. Sufficient conditions for existence are

derived by using a simple result from the theory of differential
inequalities, The conditions are given in terms of upper bounds on the
length of the time interval of interest and do not depend on controllability
or observability assumptions. The positive (semi-) definiteness assumptions
on Qi’ Rij are not used in proving the gxistence of solutions,

Although the conditions give only a partial answer to the question

of existence of solutions, they can nonetheless provide a positive answer

for a certain class of problems. The extension of the present results to the
N-players case is straightforward,

In Section 2.3 we consider the case where f,Ll,Lz,gl,g2 are
analytic functions, the time interval is finite and fixed and the players have
closed loop information. It is shown that if the strategy spaces are re-
stricted to analytic functions of the state and time then the Nash equilibrium
pair is unique - if it exists, 1In particular, for a linear quadratic game,
where the matrices involved are analytic functions of time, it is shown that
if the coupled Riccati differential equations have a solution, then the Nash
equilibrium strategies which are affine functions of the state constitute the

unique analytic solution pair. Although the result of this section is proven

under the strong analyticity assumptions, it provides at least a partial




answer to the question of uniqueness for a certain class of prohlem, It pro-
vides also an additional characterization of Nash equilibrium strategies
which are affine functions of the state in the context of linear quadratic
games with analytic matrices, since it shows that these strategies constitute
the solution over strategy spaces much larger than those which are apriori
restricted to be affine in the state strategies. The introduction of analyti-
city assumptions removes the nonuniqueness of the Nash solution for determinis-
tic differential games, which is analogous to the removal of nonuniqueness of
Nash solutions by introduction of noise [17], [18]. The extension of these
results to the N-player case is straightforward.

In Chapter 3 we study LF differential games where the leader knows
at each instant of time t, the values xo and x(t) of the state and of course
t. In the area of LF games, the type of strategy spaces U &nd V which were
considered and treated successfully in the previous literature where the spaces
of piecewise continuous functions of time. In this case, the problem of
deriving necessary conditions for the Stackelberg differential game with fixed
time interval and initial condition X s falls within the area of classical
control, Thus variational techniques can be used in a straightforward manner.
The case where the strategv spaces are spaces of functions whose values at
instant t depend on the current state x(t) and time t, i.e., u(t) = ult =
u(x(t),t), v(t) = v]t = yv(x(t),t), was not treated. This case results in a
nonstardard control problem because %ﬁ appears in the follower's necessary

conditions. Since the follower's necessarv conditions are seen as state

G}
differential equations by the leader, the presence of 5% in them makes the

leader face a nonstandard control problem, In this Chapter, the nonstandard
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control problem arising from the consideration of the above strategy spaces

is embedded into a more general class of nonstandard control problems. The

characteristics of this general class of problems are the following:

(i) each of the components ui, of the control m-vector u, depends on the

current time t and on a given function of the current state and time, i.e. ]
. uilt = ui(hi(x(t),t); (ii) the state equation and the cost functional de-

pend on the first order partial derivative of u with respect to the state
t x. The vector valued functions hi may represent outputs or measurements

available to the i-th 'subcontroller,"

in a decentralized control setting.
The only restriction to be imposed on hi is to be twice continuously
differentiable with respect to x. This allows for a quite large class of

51 hi's which can model output feedback or open loop contfo} laws, It can also
model mixed cases of open loop and output feedback control laws where during i?
only certain intervals of time an output is available. The appearance of ‘;
the partial derivative of u with respect to x prohibits the restriction of
the admissible controls to those which are functions of time only. Two
different approaches for deriving necessary conditions for the nonstandard
control problem are presented., The first uses variational techniques, while
the second reduces the nonclassical problem to a classical one. The
nonexistence of a control law u*(x(t),t) which u* solves the problem for

every x is shown. The nonuniqueness of the solution of this problem is also
considered and explained, The results obtained for this nonstandard control

problem are used to study an LF differential game where the players have .

current state information (xo,x(t),t)). Necessary conditions that the opti-

mal strategies must satisfy are derived, The inapplicability of dynamic
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programming to LF dynamic games is explained and discussed, The singular
character of the leader's problem is proven and the nonuniqueness of his
strategies is proven and characterized, In particular, it is shown that
commitment of the leader to an affine in the current state,time varying
strategy does not induce any change to the optimal costs and trajectory.
The Linear Quadratic LF game is also worked out as a specific application.
We will now outline certain generalizations of the results of this Chapter.

We consider, first, the discrete time versions. Consider the dynamic system
1.1 m,. m
xk+l = f(Xk,U (h (xk’k) skK)yeooyu (h (X‘k_’k) 2K)s
u (bt (e LK) K, (0 (LK) ) k)
X xk’ ? 3 e e 0y b'e x‘k’ 2 b

X given, k = 0,...,N-1

and the cost

N-1
I = glxy) + ZLOgut (bl 10,0, (60 (LK,

(U CHR S SIRTICLICRR SRS

The proof of the corresponding Theorem 3,2.,1 is straightforward, An immediate

consequence is that the restriction
i i i i
ul(hl(x k), = Alh (x k) + By, 1=1,.,.,m

where Ai,B; are matrices, does not induce any loss of generality as far as
the optimal cost and trajectory are concerned. Proposition 3.2.1
carries over, too. A discrete time version of the LF game of 3-1 can be

defined (see [33]), and analyzed as in 3-3. Several information patterns can
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be exploited by employing different hi's (see [33]). The restriction of the
leader to affine strategies can also be imposed in the discrete case. The
case where higher order partial derivatives of u w,r. to X appear can be
treated, and all the analysis carries over, This case is of interest in
hierarchical systems since it arises, for example, in an N-level LF game where
the players use control values dependent on the current state and time,

Finally, an N-level LF game where on each i~level (i=1,...,N% n, followers

operate (,ui',...,ui

n ), play Nash (or Pareto) among them, and u;l =

1

i,1i . . . . i .
uj(hj(x,t),t))J=l,...,ni, i=1,...,N, with given hj and fixed X to, t_ can

£
be easily treated by using the analysis for the nonstandard control problem
supplied in 3-2,

In Chapter 4, we consider a continuous time two player deterministic

differential game with a linear state equation and two quadratic cost functionals.
We consider the case where the players have at each instant of time recall of
previous values of the trajectory, i.e. they have memory. What they remember
about the previous values of the trajectory, is allowed to change with the

elapse of fime. It is a known fact that in LF and Nash differential games, the re-

sulting trajectory and strategy values vary with the admissible strategy spaces.
Most of the results available until now deal with cases where the current state
or the initial state of both of them are the only available information to the
players. A more general situation is to assume that at each instant of time,
each player knows something about the previous values of the state of the
system and about the previous values of his and the other player's decisions.
The first attempt to derive necessary conditions for zero sum games where the

strategies depend at each instant of time t on the part of the state trajectory




between t-r and t, where r>0, appears to be in [40], 1In [41], [42] the zero-

sumcase is considered where one player has a time lag information on the
value of the state, Im [42] a Hamilton-Jacobi theory is developed for such
games, In Chapter 3 the LF differential game was solved when the leader's
information at time t is x(t), x(0), and t. It was shown there, that the
leader can in general restrict himself in strategies affine in x(t) and that use of

nonlinear strategies in x(t) will not improve his cost. The argument of

Chapter 3 can in principle be extended to the case where the leader's infor-
mation at time t is {x(8), to S 8 < t} and one can show that the leader

does not in general deteriorate his cost if he uses strategies affine in
{x(0), t, < 9 < t}. Therefore one is motivated to restrict apriori the
strategy of the leader to be of the form ét[dsn(t,s)]x(s) + b(t), in which
case n and b are what the leader will actually choose. For given n and b

the follower solves his problem. Necessary and sufficient conditions for the
follower's control problemcan be found in [45] and [46] (Theorem 5.2) respectively. 1
On the other hand, the leader's problem is quite difficult since his unknowns

are n and b. It was also shown in Chapter 3 that the principle of optimality
holds in LF games if and only if the leader's problem can be treated as a
team problem for both leader and follower. (This does not necessarily mean
J1=J2). These remarks motivate us to study LF games where the solutions are
linear in {x(9), to € 9 < t} and constitute a team solution for the leader's
problem, In our model a wide range of delayed information structures is

included, from perfect recall of the previous trajectory to recall of only one

previous value of the trajectory. Cases where information about the past
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i strategy values is available to the players are also considered, We consider
strategies affine in the available information and represent them by using
Lebesgue-Stieltjes integrals, Both Nash and LF equilibrium concepts are
considered and sufficient conditions are developed for a particular but
quite interesting class of problems, Particular emphasis is placed on the
LF case, The problem that we deal with differs from those considered by
Halanay in [40) and by Ciletti in [41], [42])., Halanay considers the zero

sum case only and he allows the strategy values at time t to depend on the

part of the trajectory between t~t and t, where >0 is fixed, Ciletti
considers also the zero sum case and allows dependence of the strategy
values at time t only on x(t-0) and the strategy values between t-¢ and t,
where 0>0 is fixed. Existence and uniqueness conditions related to the
sufficiency conditions proved in this Chapter are not as yet known. Our
results generalize trivially to the N player case for a Nash game and to
the one leader-N rfollowers case for an LF game. Although for the time being
our results are not accompanied by computationally efficient procedures,
they are of importance sirce they provide valid characterizations.

The last Chapter 5 deals with Nash games in the presence of
stochastic disturbances. It is known that the study of stochastic games is
usually more difficult than the study of deterministic ones and consequently

very few interesting and general results are known. The aim of this chapter

is to solve some special classes of Nash games and to point out several difficulties

which make the explicit solution of such games very difficult, It is
shown that in linear quadratic Nash games, decoupling of the information
of each player from the influence of the controlof the other is not always

sufficient to establish existence and uniqueness of solutions affine in the
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information. Conditions where this decoupling property sufficies to achive
that are exhibited for both static and dynamic problems. It is also shown
that decoupling of the information of each player from the control of the
other and decoupling the cost functional of the one player only from the control
of the other is very close to being sufficient for existence and uniqueness of affine
in the information solutions. Conditions where this is the case are exhibited,

We start in Section 5.2 by considering a static stochastic Nash game, where
each player has a quadratic cost and his information is a linear function of

a Gaussian random variable. Certain known results are considered first and
some new ones are provided concerning the existence and uniqueness of the
solution. In 5,3 we study solutions of the game of 5.2 which are affine in the
information and provide a method for finding them. In 5.4 we generalize some
of the results of the previous sections to the case where each player's control
vector is subdivided to smaller control vectors each one of which has to use
different information., The information available to the subvector of each
control vector is nested. In 5.5 we consider a discrete time stochastic Nash
game with linear stochastic state equation and quadratic costs where the
players have noise corrupted state measurements., Special cases of this game
were solved in [l7] and [63]. The case where both players have perfect state
measurements., was studied in [17] and it was shown that if the noise in the
state equation is nondegenerate, then the game admits a unique solution affine
in the information, under invertibility conditions for certain matrices. It
was also shown in [17] that if the noise in the state equation is degenerate,

then the game will have in general an infinite number of nonlinear solutions.

The case where at each stage k the plavers share their previous state




measurements and their information differ only in the k-th

state measurement was studied in [63] where it was shown that the
game will admit a unique solution affine in the information, under
invertibility conditions for certain matrices. In the more general case
where the assumptions of [17], [63] concerning the information of the players
do not hold,the solutions of the game becomes extremely difficult. In Section
5.5 we single out some new classes of problems which can be relatively easily
solved by using the results of the previous Sections. In the last section
We translate some of the results of Section 5.5 to a continuous time
stochastic Nash game with a linear stochastic state equation and quadratic
costs where the players noise corrupted state measurements. Examples
demonstrating certain properties of the solutions are considered in most
Sections.

Finally we have a Conclusions Chapter 6 where we outline directions

for future research and sevenAppendices,

1.3. Notation and Abbreviations

n , s . . . ; ,
R: n-dimensional real Euclidean space with the Euclidean metric

i or | l: denotes the Euclidean norm for vectors and the sup norm for matrices

': denotes transposition for vectors and matrices.

k

For a function f: R > R™ we say that £ € ¢ if f has continuous

mixed partial derivatives of order k. For f: R > R, Vf is considered as

nxl column vector and fxx denotes the Hessian of f. For f: R" - Rm, vf is
n__k m n k
considered as nxm matrix (Jacobian). For f: R XR=K, where x€R, y€R,

we denote by %ﬁ or fx or fo the Jacobian matrix of the partial

derivatives of f with respect to x and is considered as nxm matrix.
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C([to,tf],Rn) = Cn: The Banach spaces of continuous function . [tO’tf]
n .
@: [to,tf] =R, with norm
[/l = suptloce) |
Holl =supli®(e)l; t:e[to,t:f]}
where | | denotes the usual Euclidean distance in
n
R .
Lo([t.,t ],Rn) =L : The Banach space of Lebesgue integrable functions
1 0’ f 1,n
n Hon!! ot
?: [to,te] =R" with nom [lpl=  loce)lde.
t
0

Lm([to,tf],Rn) =1 The Banach space of Lebesgue measurable functions

W’n:
which are almost everywhere bounded, with norm

l.l‘Pii =ess supi lCP(t) | ,tE[to,tf]}.

NBV([to,tf],Rn) =NBV: The Banach space of normalized functions of bounded

variation, L.e.: continuous from the right on (to,tf),

zero at tg, and HCPH=Var(CP) for YENBV.
-
1

% * . %
B~ denotes the conjugate space of a Banach space B. If x €B and x€B, we

A norm in one of these spaces is denoted sumetimes by HHC’ HH
* *

write <x ,x>=x (X).

w.r, to: with respect to

w.l.o0.g.: without loss of generality

n.b.d.: neighborhood.

Additional notation is introduced when needed,
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CHAPTER 2

CLOSED LOOP NASH STRATEGIES

2.1, Introduction

The present Chapter deals with closed loop Nash solutions to continous

time differential games and is divided into three parts, 2.2, 2.3, and 2.4.

In 2.2 and 2.3 we are concerned with existence of solutions to linear quadratic

Nash differential games and in 2.4 with uniqueness of analytic solutions to Nash
differential games with analytic data,

In 2.2 we consider the linear quadratic, time invariant case over
an infinite horizon. The structure of 2.2 is the following. In 2.2.1 we
describe the system and formulate the problem which is the existence of
linear closed loop Nash solutions which result in a stable system. The ques-
tions posed are pursued in 2.2.2 and 2.2.3. The existence of such solutions
depends on the existence of solutions to a system of two coupled algebraic
Riccati equations which result in a stable closed loop system. Conditions
for the existence of such solutions are derived via Brouwer's Fixed Point

Theorem. The conditions derived in 2.2.2 state that linear closed loop Nash

strategies exist if the open loop matrix A has a sufficient degree of stability

which is determined in terms of the norms of the weighting matrices. 2.2.3
contains some extensions of the conditions derived.in 2.2.2 which do not
require stability of the open loop matrix.

In 2.3 we consider the linear quadratic finite time (t&€[0,T]) case.
The matrices involved are piecewise continuous functions of time. The struc-
ture of 2.3 is the following, In 2.3.1 we describe the system and pose the

problem which is the existence of linear closed loop Nash solutions. The
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existence of such solutions depends on the existence of solutions to an
associated system of two coupled Riccati differential equations over [O0,T].
In 2.3.2 sufficient conditions for existence are derived by using a simple
result from the theory of differential inequalities.

In 2.4 we consider a Nash differential game where the functions f,

L»8y>» involved in the description of the problem are analytic functions of

their arguments and seek Nash solutions which are also analytic functions of

their arguments. This problem is studied in 2.4.1. 1In 2.4.2 we apply the

results of 2.4.1 to a linear quadratic, finite time, Nash game where the

matrices involved are analytic functions of time,

Four Appendices to this Chapter are given at the end of the Thesis.

2.2. Infinite Horizon: Existence of Closed Loop Nash Strategies and
Solutions to Coupled Algebraic Riccati Equations

] 2.2.1., Problem Statement

Consider the dynamic system described by

- y = + = 2
f X = AX Blu1 + Bzuz, x(0) Xy té [0,+) 2.1)
and two functionals
+o0
= [ + 4 '
Iy (ugsu)) \g GeQuxtuiR) Uy uoR) Hu))de
1 o 2.2)
1 . , = ] +yu' +u'
- A I (U p) ~£ (7 Qpx ¥ uyRypup ¥ U Ry Uy NdE
m m,
where x, u, u2 are functions of time taking values in Rn, R , R respec-
tively an. A, B, BZ’ Q = Q;, Rij = Rij’ Ry; > 0, i,j = 1,2 are real constant

matrices of appropriate dimensions.

% % - :
The problem is to find U, u, as linear functions of x, i.e., ]

}
!
!
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* % * e %
ui= -Lix, with L.1 real constant matrix, such that Ji(ul,uz) is finite (see

Aopendix B), i = 1,2 and

* * *
Jl = Jl(ul,uz) < Jl(ul,uz) for every u, = —le
(2.3)
e’ s 5 whu) fo = -L
2 2 Y12 2 ula 2 r every Uz 2X-

The conditions (2.3) are the Nash equilibrium conditions. It is known (see

* %
{1]), that a necessary condition for the existence of such controls ups U,

is that there exist constant real symmetric matrices Kl’ K, satisfying

2
0=KA+A'K, + Q - KB “lak - xoB.RBiK - K,B.R.\B! K
1 17 QK BiR BIK - Ky ByRy By, - KoByRy 5By Ky
+ K. B.R.IR .RIB!K
2B2R2oR15R9 8Ky
. ) ) 2.4)
= ' - “inn - Sia - “lat +
0=KA+A K, + Q, - K,B,Ry B K, - KB R BjK - K BR; BK,
-1 -1,
* K BiR Ry R 1Bk
It can be proved that if such Ki's exist and the closed loop matrix
3=4A-BRIB'K - BRLBK (2.5)
171171 2R228,%, B,
~ . ~ . 2
has ReA(A) < 0, i.e., A is asymptotically stable (A.S.), and
Q. + K'B R7IR, .R'.l.B‘.K. 20, i#3j, i,j=1,2 (2.6)
1 3737331373373 73

For (2.6) to hold it suffices for example: Qi > 0, R;. 2 0.
J

\ig
& L . — L md




then the strategies

- * - -1 1 ] -
u, = -Lix = -RiiBiKix, i=1,2

2.7

*
satisfy (2.3) and J*, J2 are finite., (In relation to this see Proposition 1

in [4] .

The proof of this Proposition in [4] does not hold under the

assumptions stated there, see Appendix A).

In the next section we will deal with the solution of (2.4) and try

to find conditions under which solutions exist and yield A A.S.

, 2.2,2. Conditions for Existence of Solutions

We start by introducing the following notation

(2.8)

where Idenotes the nXn unit matrix. Using this notation, (2.4) assumes the

- form

A
0=R(K) = F'K+ KF + Q - KSK - KJSKJ - JKSJK + JKJSOJKJ. 2.9)

Consider the space X of 2nx 2n real symmetric constant matrices

of the form
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where M and N are nxn. X is a linear subspace of the space of 2nXx 2n real
matrices. All norms of the matrices to be considered here are the sup norms
(llal| = sup{|lax||:lix|| = 1}), and the norms of the vectors are the square root-
Euclidean norms. It is easy to see that for Y€ X, ||Y|| = max (|M|,{|N]. we
denote by I the 2nx2n unit matrix and for R 2 0 we set By = {Y¥€ X:lyll s R},

i.e., BR is the compact ball of radius R centered at the zero element of X.

We define the function & from X into X by

3(K) = R(KK) + K. (2.10)
Clearly if K€ X then 3(K)€X, and & is continuous. The following lemma is
proved by using Brouwer's fixed point theorem (see [13]p. 161).

Lemma 2.1. If for some R>0

Galis] +lls, | r? + Iz +2F% - DR + ||d} = 0 (2.11)
holds then there exists K€ X, with HK:\ < R which satisfies R(K) = 0.

Proof. For A a fixed real number we have

3(K) = K(F+>\Io) + (F'+ (1->~>I°)K + Q - KSK - KJSKJ - JKSJK + JKIS_JKJ

from which for K€ Bp,using the obvious fact: ||J|| = 1, we get

e @)l s RAAI +Fl|+][ =01 +FD + ||| + R2<3HS'.\+USO‘.D-

Since | I +2F| s I +F] + [[(1-\)I_+Fl, with equality for \ = % » we set

)\=%, (best \). The result now follows by direct application of Brouwer's

theorem. m]
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Let us introduce the transformation
K=ak ) (2.12)
where #0 is a constant and K€ X. Substituting K = Q/E in (2.9) we obtain

- A -— - - - _ - -
0= R(K) = REK) = Ry (K) = @)K+ K@F) + Q - R@?$)K - KI@®$)Ks
- 2 = = 9 - (2.13)
- JK(@T$)IK + JKI(2"S )IKJ.
. = A - =
&pplying Lemma 2.1 to @a(x) = RQ(K) + K, we obtain that if for some R 2 0 it
holds

@llsli+ s [Do’R% + (|| 1+ 20a) - R + |1Q! = 0, (2.14)

then there exists EE.X, H-IZH < R which satisfies Ra(E) = 0. But then K = oK
satisfies R(K) = RQ(E) = 0 and HK‘.‘, s IaflR. We thus have proved
Lemma 2.2. If for some x#0, R>0, (2.14) holds, then there exists KeX,
k|| = |o|R which satisfies R(K) = O.

The scaling introduced in (2.12) helps to improve (2.11) and get
(2.14), because in proving Lemma 2,2 we applied Lemma 2.1 to a whole class of
§a's which are nonlinear (quadratic in K) and asked that at least onme of them
have a fixed point via Brouwer's theorem. As it turned ~ut ¢ one of them,
say Q&- has a fixed point then all of them have (since RQ(S) = RESs) = RB%S))

although (2.14) may not hold for 8 # a.

Set

a = 3lis|| + Ul

1+ 204]

hal

e =Jqa .

o
i

]

q

or i g v i e et i

e e S ek e ae A e o




[

26

Then, (2.14) assumes the form

aa’R% + (b-1)R+ q § 0 (2.16)

If a = 0 then Bl = 0 and B2 = 0, and the game is meaningless as such. There-
fore assume a # 0. Inequality (2.14) is satisfied for some R 2 0 if and only
if

(1) 120b+ 2/a]e

or

(ii) q= J and 1 < b.

In case (ii) R = 0 is the only solution to (2.16) and thus Lemma 2.2 guarantees
only the solution K, =0, K, = 0. Consequently we will concentrate on

case (i), i.e., when

12 l[1+204] + 2|]e- (2.17)
If (2.17) holds then (2.16) is satisfied for all R: Rl < R = R2 where
4 2 2 2
R, , = Lobt/ - 1)%a0e z 0. (2.18)
1,2 2 2
o a

In this case Lemma 2.2 guarantees the existence of solutions Kl’ Kz with

”K]_”a HKZH < |e|R. We have

Theorem 2.1. Let a>0. If for some @#0, (2.17) is satisfied, then for

every R: R; = Rs R, where R;, R, are as in (2.18), there exist K,,K, satisfy-

ing (2.4) such that

i .—Zyl..&l-‘-— = 2 19)
K/l = |o[rR= lol R, = TS T M. Q.

Proof. The proof has already be.u given except for the right hand side of

(2.11). since 1 = ||I+20A-20A! < "I+20A" + 2|a]'|All we have
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1 - b s 2|e]'4

1 b+./(1 b) R L (- b)+,/Q. -b)2 _ 2ial _ ol

2cya a

and so

||®, =

Notice in passing that M is independent of the magnitude of &. Before
giving the next Theorem which provides us with necessary and sufficient
conditions for the existence of an @ # 0 satisfying (2.17), we prove the

1' following Lemma.

Lemma 2.3. Let [ be a real nXn matrix, Y and P real numbers Y #0,

and A{[) =¢ + jw be any eigenvalue of [". Then

1) 1If

Nz+vrl = p (2.20)
i then
| (cr+;{1-)2 + s Q%)z. (2.21)
i (i1) Ify >0 and p= 1, then o0 < 0 or g = w = 0 for every A().
y (iii) If y <O and p = 1, theno > 0 or¢c=w = 0 for every AT
. (iv) Let T = TAT-]', where A is the Jordan canonical form of T.
, We set

o' = l'T‘l'!lT-l‘.l ' =21).

If
H1+yal) = ;% (2.22)

then (2.20) holds.
(v) If A is diagonal and

1.2 2 0
+5)¢ + —
< Y) ws(pY

- ————




holds then (2.20) holds.

In particular, if I' is symmetric then (2.28)
is equivalent to (2.21)2

Proof. (1) Let v be an eigenvector of I' corresponding to ¢ + jw = A ()
and |lvil = 1, w.l.0.g. Then

p = lI+Yr|| 2 |(X+YT)v]| = 14y @+ jw)|
and (2.21) follows.

(i1i) This follows trivially from (2.21) by noticing the (2.21)
corresponds to a disk with center at =L

. 1
Y and radius TVT ,» which in case
Y >0 and P < 1, lies in the left half plane of the (@,jw) plane.

(iii1) See (ii) above.

(iv) Trivial.

(v) This follows by using (iii). If I' is symmetric then T'

=T-l
and [[T'}| = ||T{}= /Amax(T'T) = 1 and thus p' = 1. o
Theorem 2.2. Let A(A) = 0 + jw be eigenvalue of A.
(i) If € = 0 and (2.17) is satisfied for some a # 0 then for
A(A) it holds
Zhe assumption that A is diagonal in (iv) is essential. As a counterexample let
Loy
2 -1
F=A-= [ > T=T =I,9=1
0 P——
~ 2,:

in which case (2.21) is satisfied for all Y: O <Y = 4 but for x = -é(l,l)',
N2
Ixl = 1 @ryrx! =1y Ve > 1.




RedA(A) < 0 or A (A)

o= ReA(A) >0 0r (A) =0 ifo <O (2.23)
1.2 2 1,2
+=3% 4+ 4 g (—=
@ 201) v (Zoz
1= 1420l
! ! s Lal
”Klf“’nKZ'\ = \a\a ¢ - (2.24)
(ii) If ¢ # 0 and A = -¢I, then any O<as-2% satisfies (2.19) and
& LUK < or, = <. (2.25)
n? pAL o4 2 a .

(iii) If ¢# 0, A # -¢l and (2.17) is satisfied for some o # 0, then

for any A (A) it holds

S g~ orA(A) = -¢ ifa>0 (2.26)

e if >0

C > t+¢ or A(A)

and HKlH, HKZH. satisfy (2.11). Moreover |a|<ﬁ .

(iv) If A#-¢l (A#el) is diagonalizable, A=TAT'1 where A is the

Jordan canonical form of A, p' = HT”'”T-IH and for some ¥y > 0 (y < 0) it holds
2
@rerHi+u s — (o —e+DHZ P s L (2.27)
Y "2 Y 1y, 2
pY pY
Y = Y . e
o = = £ .
then 2Lt er) (o 2(1-€Y)) satisfies (2.17)

Proof. (i) (2.23) follows from Lemma 2.3 (i,ii,iv) and (2.14) from (2.19).
(ii) The first part is trivial. (2.25) follows as (2.24).
(iii) Let b =[Z];| . Then (2.17) yields

b-c¢z2l!bi+al ifo>0

b-¢2"bI+Al] if o <« 0.
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1
Necessarily b = ¢ > 6. Lety = zg:;y ,» then

L2 I+y@+eD))l if o> 0

1= HI+y(-A+ gI)l! if o < 0.

We set I' = + A + ¢I and we have

1 2 f1+yril, (2.28)

(2.26) follows now from Lemma 2.3 (ii)-(iii).
(iv) We bring (2.17) to the form (2.28) and apply part

(1v) of Lemma 2.3. .
If A is symmetric, then the existence of % satisfying(2.27) is

equivalent to the existence of o satisfying (2.17). For (2.17) to hold it

suffices 1 = Jtr[ (T+F20A) T (T+204A)] + 2|a|€. By using the fact HMHZ s tr(M'M)
it follows that the existence of an o > 0 satisfying (2.17) is guaranteed in

the follcwing two cases (assuming A is not a scalar).
(i) trA s -¢

trA'a < e2

A = (n-1)trA'A + (trA)2 + 2¢trA + (2-n)€2 =20

1 _ =(ettrA) -./A
2¢ = N
2(e“-trA'A)

(i1) trA'A > e2

trA S -¢ .

We shall now consider the stability of the closed loop matrix A

(2.5). Let
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Al g !l
a' = allgll + ils "
e =J@ . €=t silgh
r——-—————E—E (2.29)
_ 1-b+/(1-b)2-tg’e
Ry T 2
20”"a
Q- 1-b+/ (1-b) 240262
2 2ala
where a, ¢, g, b are as in (2.15).
Theorenm 2.3. Let Re[A(A)] <O
(i) If for some @ > O it holds
12 |1+ 204]| + 20e (2.30.1)
1> |l1+ 204 (2.30.2)
20 il o2 2 2
o Hsﬂaz <a HsOHR2 + 11q| (2.30.3)

then there exist K, KZ’ HKiH < &RZ, i =1,2, solving (2.9) and A (2.5) is

A.S.

(ii) 1If for some ~ > 0 it holds

12 ||1+ 204l + 206’

(2.31.1)
1 > 1+ 20Al| (2.31.2)
lal} ox s | # 0 (2.31.3)

then there exist K K

1o Ky KN = oRy, 1= 1,2, solving (2.9) and A (2.5) is

A.S. .

Proof. (i). (2.30.1) makes Theorem 2.1 applicable. We have

T+ 204 = 1T + 20(a-5 0K -5 0K, )l < M1+ 204l + b PSRN

e e e i A ———————— T r:
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Since by Lemma 2.3 A will be A.S. if IIT + 2all < 1 for some x > 0, it suffices

! 2
1+ 2oall + 4o 7SI <1,

(2.30.2) implies R, > 0. Using K = @K and (2.19) we have that it suffices

('I+20A! - LR, + mz!\sile <0

and since (2.14) holds for R = R2 it suffices

2

‘wz\,!SE\Rg < (3!,13"+}\so!1)q2R2 + Q!

which is equivalent to (2.31.3)

(ii): (2.31.3) implies that the inequality

2

a'a?R? + [T+ 204 -1)R+ g < 0

is satisfied for all R: Ri < R< Ré where

_ Lollzoeal * /(- pooall) 202, 2

Rl
1,
2 2a2a

Ré 2 R} = 0. (2.31.2) implies Ré > 0. If the above inequality holds for
'

some R and «, then (2.14) holds for the same R and o since a < a . Therefore

there exist K;, K, H‘K]'_‘:ll < oR!, i = 1,2 solving (2.9). Repeating the

2!

analysis of (i) we have that for A to be A.S. it suffices
2 '2 1" | 2 2
4o S||Ry" < (4lisi| + s 'Pa"Ry” + ial

which holds by (2.31.3). o
1f equality is allowed in (2.30.3)or }jQ] = HSO‘,"_ =0 in (2.31.3)

then the conclusions of (i) and (ii) in the given Theorem change and allow

% stable, i.e., Re [A(A)] = 0.

il BRI A s e

i SRR 2 i . s ke
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The geometric interpretation of the conditions given in Theorems 2.2

and 2.3 is given in Figs. 1 and 2. Figure 1 corresponds to Theorem 2.2, parts i,
ii, iii, which say that a necessary condition for the existence of an >0 satis-

fying (2.17) is that the eigenvalues of A lie in a disk centered at %% with radius

1 , .
r= z; -¢ , for some ¢ > 0, which is equivalent to saying that all 3 (A)'s lie

in the open half plane on the left of the line €y (c=-¢), or at -¢. Figure

2 corresponds to Theorem 2.2, part (iv), where it is assumed that A is diagonaliz-
able. It shows that if the eigenvalues of A lie in a disk as in Figure 2 with

radius r = —l—(—ln-e) and centered at L then this « satisfies
I~ 2« 2

(2.17) and thus (2.9) has a solution. If A is symmetric then p' = 1 and

8= 900. If o < 0, then we have the mirrorimages with respect to the jw
axis of the circles, cones, lines depicted in Figures 1, 2.

Employment of a different function ¢ in (2.10) and application of
Brouwer's theorem may in general provide different, perhaps better, existenée
results. Another suitable & can be defined as follows. If K solves (2.9) and A

(and thus F) is A.S., then E==K, where o> 0, solves equivalehtly (see Appendix C)

o
o .

= - = = 2= =2 = = - t

k= [, Q- Rask- Ko 2sKJ - JRa 253K+ JKIa?s IR e Cdt. (2.32)

- -1
Let Qa(K) denote the right hand side of (2.32). Let also A = TAT ~, A

being the Jordan canonical form of A with mxm the dimension of the largest

Jordan block (m < n). Let also a, q, ¢ be as in (2.15), >0, and

p = lljr ™
X = max Re [A(A)] < O (2.33)
m-1 TR i+j+l
(i+i.
m(w) = T ;... (% for w> 0,
i,j=0 1

n= n(1/<-ai>>
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€1
a>0 :
|
!
|
|
|
|
|
|
|
I

[@ ~ X(A)]

FP-1567

Figure 1. Regions of eigenvalues of A in accordance to
Theorem 3.2 (i)-(iii).

i
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FP-5868

Figure 2. Regions of eigenvalues of A in accordance to
Theorem 3.2 (iv).
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and ¢(m,z) > 0 be such that

n(l/e(m,a)) = Ei; .

Clearly e(m,») exists and is unique, for given o« and m.

Theorem 2.4. Let A be A.S. and T, A, m, 7, e(m,0) as above. If it
holds that

A —e(ma) - ol[ (2.34)

then there is K€ X which satisfies (2.9), and

- 4qa’ 1 = .ZJ.AJZ_ . (2.35)
p

pbrm a

. _ 1 1
K| = oR, = « {7 =%
2ax g T

In addition, if A is diagonalizable (i.e., m = 1) then e¢(l,o) = aepz for

every o > 0.

Proof. Let K = aK, a>0, lIKl < R,R 2 0. In order to use Brouwer's theorem

we ask for HQU(K)H < R for some o and R. It suffices

+eo !
e, GO1 =1l [, Tt Q- RaSK - KIa2SKJ - JRa2sIK + JEJastJEJ] -eF La|
2.2, ¢ oFt2
FEL
< Qi+ @lisll+{is jDe s J 1% = &
or by using (D-1) (Appendix D)
aasz-LR'*' qg=90 (2.36)

pom

which holds because of (2.33), (2.34). The rest is easy. =

It is remarked that if A is diagonalizable, then (2.34) gives

A= -epz) introduction of ¢ > 0 induces no improvement of the result, which

is in agreement with the fact that scaling cannot facilitate the existence of

solutions of (2.9). 1Incase A has Re {MN(A)] > O, we can have results similar




to those of Theorem 2.4 by employing @ < 0.

The geometric interpretation of Theorem 2.4 is given in Figure 3

and shows simply that if the eigenvalues of A lie on the closed half plane

o .
on the left of the line ez’(c = - Eimé-l), for some @ > O then there exists
2 .
K which solves (2.9). If A is diagonalizable then - EL%;—l = -¢p” and since

p = 1, the line €y is on the left of € In this case a combination of

Theorems 2.2 (iv) and 2.4 gives aﬁ easily verified sufficient condition for
solvability of (2.9).

‘ Finally Theorem 2.3(ii) can be inferpreted along the same lines as
Theorem 2.2, wusing Figures 1 and 2, where ¢' is used instead of ¢. So,
if €' # 0, A is diagonalizable and all A(A)'s lie in a disk as in Figure 2
with ¢' in place of ¢, then (2.9) has a solution and the closed loop matrix
A is A.S. If ¢' = 0 and A is diagonalizable (then ”QH =0, ¢ =0), then if
the eigenvalues of A lie in the interior of the disk in Figure 2 the same
conclusion holds. The version of Theorem 2.3 with @ < 0 and Re) (A) > O results

to A unstable, i.e.,Re[X(K)]> 0 and is thus of no interest to us.

We close this section with five remarks.
(i) The only assumption on Qi’ Rij's used in developing the proofs in this

section was that R{i, exist. Neither Qi 2 0 or s 0or Rij 2 0, nor any

Ry2
controllability, observability, or optimality conditions were used.

(ii) If Q= Q+ KSK + JKJSOJKJ = 0 (it suffices R12 and R21 2 0) and A is A.S.,

since

=
1
2l
+
-
(o]
=
~ "
il
)
Vel

L>
-
Qo
| >

a standard result in Lyapunov theory yields K 2 0. Since J? = xéKixo (see

[4]) we will have Jf > 0 for every X, as it should be expected in case

Qi’ Rij =20, i,j = 1,2.

.

i
1
1
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[®@ ~= \A)]

Figure 3. Regions of eigenvalues of A in accordance to
Theorem 3.4.




e iagin ¢ C A A T ARIN v T TR ST T N

39

(iii) Consider the single Riccati

1

KA+ A'K+ Q- KBR B'K=0 (2.37)

where R> 0 and A is A.S., with Q not necessarily positive definite. Then
Brouwer's Theorem provides results which can be used to easily verify whether

the frequency condition of Lemma 5 in[1l] holds. It is easy to prove (as

in Theorems 2.1, 2.2) that

(i) if there is o > 0 such that

12 [|T+ 204l + 20 Jq|j|[B8" "B (2.38)

- then (2.37) has a solution K. If in addition

. @’|sl[x, < liq| (2.39)

2 1> |1+ 204l

where

1 ! - 2_ ! '1 1
R, - 1-|| H+20Al +/ (1 ugéﬁm!) 4||Qll/[BR” B'] (2.40)

b then A - BR'B'K is A.S.

(ii) If there is an o > 0 such that

- L |1+ 20m] + 242 - o ylQfBR 8] (2.41)
then (2.37) has a solution K and A - BR-lB'K is A.S.

Let now Q= -C'C = 0, and assume (A,C) observable, (A,B) controllable. 1

Using Lemma 5 of ({11}, we see that (2.38) and (2.39), or (2.41) imply that

-1, . -1_>
I-B'(-jw-A') C'C(jw=A) "B=0 for all real w. (2.42)

-‘-m 1]
Also, since K = [_ eFt(q-ksK)e’ T and Q= 0, it will be K s 0.

(iv) In order to guarantee the fixed point property of % (K), one could have
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employed a contraction mapping machinery. Then 3 should map a closed set
Do € X into itself and in addition & should be Lipschitzian with Lipschitz
constant L,0 £ L < 1 on Do' But since & is quadratic in K Do should be
bounded in order to guarantee that & is Lipschitzian there. However this
amounts to Do compact and we could consider Do a ball Bva.l.o.g.. So, in
order to use the contraction mapping Theorem we should have made assumptions
to guarantee L < 1 in addition to those made to allow the use of Brouwer's

Theorem and this would result in a weaker conclusion.

(iv) The assumptions of Theorem 2.1 guarantee the existence of Kl, K

2
solving (2.4), which lie in BR . Thus if the solution of (2.4) is unique it will
1
be in BR - If not, then there may be additional solutions Kl’KZ in BR’
1
R>R1 which are not in BR which solve (2.4).

1

2.2.3. Extensions

Let us now try to relax the assumption on A to be A.S. Two approaches
will be considered. 1In both of them, we use the solution of an appropriately

defined auxiliary problem in order to show existence of solutions to our

main problem via Brouwer's theorem,

Consider first the optimal control problem

o
: : 1
x=axt [BIB] | 1, x(0) = x, tel0, )
e
k3 | (2.43)
® /ul\‘
min fo(x"(}x+ [uizuéji )dt

where
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- -~

+ -
A DAk S - -
QWY .2 R0
===, R=| o= , (2.44)

R.. .+ R

| & 222R12 R

( |

. = =~ 3 .
with R;» R2 > 0. Under certain assumptions (controllability-observability
and Q= 0, or see Theorem 2, Page 167 in [14] or Remark (iii) in (2.3))

there exists K satisfying

0=Ra+A'K+ Q-
BT AKT Q- K, *s)k (2.45)
with
5, = BR8B!, 5 =B R I's
1 - Bk By, S, T BR)B,
such that
i f"ls'i{x
V! e
S (2.46)
u2$ 3 R2 Bsz.l
. I 4 .
solves (2.43), and such that
A=A- (5t sz)K (2.47)

i.e., the closed loop matrix for (2.43), is A.S. Let

K1=R+A1, K. =K+A4 (2.48)

be substituted in (2.4) and by using (2.45) we obtain

3
20, 1% j, i,j = 1,2.

For this to hold it suffices R,, > 0, R,
ii ij




o~

~

= ~' rd 2 - - % T(a +~ - -
0= 81A+ A" + 08,5 +8,-8; -8 K+ K +5,-5) -5,
8,08, = 8RFKR(S 1 -8)8, = 81818 = 81558, = 8,558
A Ql-Qz+1~<(" +S.+s -8 -8, -5)K
+ A8 A+ S -5, -5, -
172 2 175975,17°17%,7 9,
2o (2.49)
= A X+ % +% -5.-S)K+ RGS.+S.-8, -8.)
0= 8,A+Aa'%,+08,E +5,-5 -5))K+ K, *+5,-5,-8,),
885, SR+ K(S 5= S1)8) = 8,8,8) = 8,818 = 8158,
WY R, +5, + s, -S.)K
+ AlsozAl + + K(Sl 52 Soz-sl 9 K-
where S,, S . are given in (2.8).
R 1 ol
Let a be as in (2.15) and
2 r
N ! 0]
;o s,
~ y
= %(s +~ - -
" l,l.1<(s1 S,- 8, sz)u + g
= K - K - .50
by = max{|Kes ) - s ILIRG - 51 (2.50)
~ 4 -~ - ~
’ q = max{[|—5=+K(S, +S,+8 ;-5 -5, - 5,)Kl,
Q- . . .
=+ KB + 8,45, -5 -5, - s K]} .
1
B = |1+ 20| + 20p
2 . 1-’5+/(1-E)2-4a2a2?i
| 2 2 .
200" a

The proof of the following Theorem is similar to the proofs of

Theorems 2.1 and 2.3.
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Theorem 2.5.: Let A, 4, q be as in (2.47), (2.50), o # G, then

(1) If for some o > 0
12 ||I+ 24| + 20 +/37) (2.51)

then there are 4, 4, such that K, = K+ a5 K, = g+

1 2 solve (2.4) and

- 2
lag) < oF,-

(i) 1If in addition to (2.51)

~

1>0b
(2.52)
20 .02 2 ~2 = ~
I
o[s||R; < @l IRy + 204 R, + q }
then the closed loop matrix A (as in (2.51)) is A.S.
(iii) If for some ¢ > 0
12 ll1+ 20all + 20(u+y/@H[SHT 7 (2.53)
. \
1>b >
q or l[s |l or p, # 0 a
/

P

then both (i) and (ii) above hold.

Proof. The equation (2.49) can be written

G =aAF+ F's + ¥@)

~
R N )K |
N 3 K(Sl 82 Sol-Sl-Sz-Sz)K 0
QZ-Q]. ~ o~ ~
+ + -8,-§.-
R 0 5+ K(S #5458, =5, -5 )K
where
/V N

p= & 0
0 A




l
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|
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Using similar methods as in the proof of Lemma 2.2, we conclude that it

suffices to hold

a’R + [I|I+2a§\\-1+zpa]R+as 0 (2.54)

in order for (2.49)to have a solution s A2 where HA H, ”AZH < oR. The
rest follows as in the proofs of Theorems 2.1 and 2.3. a

The usefulness of the presented approach is clear in case the
game is used to describe a situation where two independent controllers
desire to achieve the same objective using slightly different information
(Qi) or control effort (Rij)'

Consider now the two independent control problems

Xx = Ax + Blul’ x(0) = X t€ [0,+=)
) (2.55)
c e s ' [
minimize Io(x Qx + ulRllul)dt
and
x = Ax + Byu,, x(0) = x,, t€[0,+w)
(2.56)
(==
> : . 1 1]
minimize fo(x Q2x + u2R22u2)dt'
Under proper assumptions the two Riccati equations ’
= A'K, + K, A+ - K,8.K
0= A'K + KA+ Q- KSK 2.57)
= ’— 7 - z X
0 = A'K, + KyA + Q, = K,S,K,
. > I = -1 13 = -1 "
have solutions Kl’ KZ’ the U -RllBlle, u, -Rzszsz solve (2.55) and
(2.56), and

A, = A-S.K, A = A - S.K

1510 A 22 (2.58)

are A.3. Let




Then (2.5) can be written

0= F'A+ AF - oSA - AJSAJ - JASTA + JaJs J0J - KISKI - JKsJIK
(2.60)
+ JKJSOJEJ - KJSAJ - AJSKJ - JKSJA - JASJR + JAJSOJEJ + JEJSOJAJ.

Let also
b= |Ks|| + I|kus !l + |[Kus]
b= fiksl} + flkas || + [[kJs]| (2.61)
q = ||KISKT + JKsJK - JKIS_IKJ]|.
b = |1+ 2F| + 208
— - 2 2 -
R = L=b*y/(1-b)"~4y"ag
2 ZQ/?'a
Theorem 2.6. Let F, &, q be as in (2.59), (2.61), a £ 0
(1) If for some o > 0 it holds
Lz [T+ 20F] + 2ofu+./ag ] (2.62)
then there exist A, A2 such that El + 4, Ez + AZ solve (2.4) and ?YAi"!sa_R.z.
(1) If in addition to (2.62)
1>b
(2.63)

2

2” ![—2 2, Ty
o 1S~R2 < o !\So"R2




|
|
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then the closed loop matrix A (as in (2.5)) is A.S.

(i1ii)TIf for some o > O

12 |1+ 20F| + 20[F+/a(qH]s||)] (2.64)

1>b

. 7 or s, or RIS | + [[Kas|| # 0

then both the conclusions of (i) and (ii) hold.

Proof. Working as in Theorem 2.5, it suffices to hold

: RO+ (|T+24F]| = 1 + 20p]R+ g < 0 (2.65)

in order for (2.60) to have a solution A, where |lA]] < R, and so on. o

The usefulness of this approach lies in the fact that the results

il

which pertain to the case where the system is controlled separately by the

decision makers can be used to check Liic existence of the solution when the
two decision makers control it jointly and use Nash strategies.

The Theorems 2,2,2.3,2.4 and the interpretations in Figures 1, 2, 3

-
-

hold also for the two approaches presented, with the appropriate modifica-

tions. For example for Theorems 2.5,2.6, Figures 1, 2 and the first approach

one should use A, " +./aq, W +,/(a+”SH)ﬁ instead of A, ¢, ¢' respectively.

Finally, note that the existence results in all cases developed
previously are dependent on the parameter ¢ (or e¢'). Since € is a function
of the weighting matrices and since rescaling of the criteria will affect the ﬁ
weighting matrices it is of interest to point out how this scaling affects
the existence results. Nothing changes in the game if we have Ji = riJi

instead of Ji’ r, > 0, i =1,2. So considering r Qs riRij instead of Qs
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R. . we have
1]

z sl s sl sl
¢ = max(r !l Ql,r,ll g, [3max( LD 220 ) pag(—obl o2
I'l r2 rl r2
or |
2 2 &QLH . '
¢” = e(r) = max(—, || Q1) - [3max(rlis|l,l|s,||) + max(xl[s_ 1, !Is (1]
r, )
where r = == . Carrying out the minimization of ¢“(r) with respect to r
1
] we find the minimum e*
:. % .
i e = amax Q- Ts L, -5, 1T + max (TG -5 T, s ;T . (2:66)

*
The r at which e€(r) becomes minimum is given by the following. Let

- s

lls,ll syl s st~ eyl
r_ = min( 3 ,T———r) , r_ = max( ,1——2W) , = W_lT .
o ; 1[ IENN 8 CH IR IEI! Q!

- * —
If r < T, < r_ then r 1is any point in [r’ra]'

-— * —
If r., <r=<r. thenr = r.

o4

| ® W

* - . * -
If T, < T, < r then r is any point in {r_,r].

g
2
For ¢' as in(2.29) the same analysis holds and the optimum ¢'

is given by a relation exactly the same as (2.66) but with &4 multiplying

the first term instead of 3. We can consider in all of our conditions that
e, (€') is given by (2.66). Notice also that a similar procedure will give
the minimum values of i +./;E, see (2.50), (2.61). It is interesting to
notice that if T < Ty then all r: rsrs Ty give the same e*.

Actually, as (2.3) indicates, the existence of solutions for the game should

not depend on multiplying J1 or J2 by a positive constant. Our conditions

have at least preserved this property for an interval [r,ra] or [rs,r].

- A
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2.3. Finite Horizon: Existence of Closed Loop Nash Strategies and Solutions
to Coupled Differential Riccati Equations

2.3.1. Problem Statement

Let us consider the dynamic system

’ % = AX+Blul + Byu,, x(0)=xo, t £[0, T (2.67)

the two cost functionals

T
=.1; ] 1 + ] + (]
3 (uy,u,) =3 {x(T) Kix(r)+£ (x'Qx +uiR u ujRijuj)dt}
(2.68)
i, j=1,2, i#j]

and the associated Nash game, see [l]. The state X and the strategies U, u

m m
take values in Rﬁl, R 1 and R 2 respectively. The matrices A, Bi’ Qi’ Rij’

are real valued piecewise continuous functions of time and of appropriate

2

dimensions. We also assume Ki=K::. > 0 constant real matrices, Qi(t) =Qi(t)' >0,
Rij(t)==Rij(t)'20, Rii(t)2>0, Vt€{0,T}, where the time interval [0,T] is
assumed fixed.

We restrict the admissible strategies to those which are linear in x,

ui(t) = Li(t)x(t), i=1,2.

It can be shown ([1]) that if such an equilibrium Nash pair of strategies

exist, it will be given by

-1
u, = - Rii BiPix, i=1,2, (2.69)

where Pl’ P, satisfy a system of two coupled differential Riccati equations.

2

This system can be written as:
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~-P=F'P+PF+Q - PSP - PJSPJ - JPSJP +JPJS°JPJ

P(T) =K_, t€[0, T]
where
A O
F= | }
g~0 Af
-1, ~
IBlRllal 0
s= '
L0 B,R) B!
L 2722 2}
- roo-1 -1,
BRooR19R92B 0 7
- So = . '
; -1 -l
« 0 BiR11R21R11B;
)
;Ql c
Q=
0 R,
r
0 1
J = , I = nxn unit matrix
1 0
N /
P, 0
P =
o P
2

(2.70)

(2.71)

The purpose of the present paper is to give sufficient conditions under which

(2.70) has a solution over [0, T].
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2.3.2. Derivation of the Sufficiency Conditions

By setting
P(t) = P(T-t) (2.72)
we can consider equivalently to (2.70)

P=FP+PFr+Q-PSP-PJSPJ-JPSJIP+JPJISJIPS

(o]
(2.73)
P(0) = K, t€[0, T]
where
X(t) = X(T-t), ¢t€[0,T].
If P(t) is a solution of (2.73) on [0,t') where t' < T, then
[Be)l| < BB + odFe)l] + q (2.74)
where ||‘Il denotes the usual sup norm of a square matrix calculated for
fixed t, and
o=max{2la()!! ; 0 <t < T}
B=max{3lls(e)lt + syl 0 <& <71} (2.75)

q=max{ llR(t)| ; 0 <t <1}

The «, B, q are finite due to the piecewise continuity of the matrices and the
finiteness of [0, T]. Clearly o, B, ¢ > 0. We assume B8#0, since if B=0
then (2.70) is a linear differential equation and the solution exists for T
arbitrarily large.

Consider the scalar differential equation




y = 8y2 +ay+q, y(O) =y, t20. (2.76)

Using Corollary 6.3 page 32 of [16]4, we obtain that:
if y(0) > '(0)!| and y(t) is a solution of (10) on [0,T] then the

solution of (7) exists on [0,T] and |[P(t)! = y(t), t€[0,T].

We thus conclude that a sufficient condition for the existence of a continuous

solution P(t) of (2.70) over [0,T], is that
y(0) > !!KO!! and T < t, (2.77)

where [0, tf) is the maximal interval of existence of the continuous solution

of (2.76).

A straightforward investigation of the behavior of the solution of

(2.76) yields the conditions under which (2.77) is satisfied. We state the results

of this investigation in the form of a Theorem. -

B e AR a iimiei e

Theorem 2.7: Let 8 # O and set

= .2 ~g /A o =8
Seo? - ipq, g - LB

28 P2 28 .

L}

(i) If A =0, and

2

T <Q’+ ZBI KOH (2-78.1)

then the solution of (2.70) exists and

4Although Corollary 6.3, page 32 of [16], is stated for the vector case, its
extension to the matrix case is trivial.

i
|
1
1
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1 28
! — = —tE 0,Tl.
(ii) I1f A >0, Py <P < 0, and
; Ik -p
T o= In; WEE’—_—Q) (2.79.1)
JA AR o“ P1
then the solution of (2.70) exists and
Blpy=p,) (T-t)
‘ pl-pZCe
Pl = B(Pl'pz)(T‘t)
1-Ce (2.79.2)
k)l -0
o 1
= , t€ [0,T].
(iii) I£A4 <0, p; = k+ i}, p, = k- i, k=-%, M=t i =+/<T and
1 L Nk -k

{rr=~2Tan = (

Tl ) (2.80.1) %

then the solution of (2.70) exists and

T <

\\P(t)H < k+ Atan O\B(T~t)+C)

(2.80.2)
_1 HKOH -k
C = Tan (-——)\——), t€ [0,T]
where Tan-1 is the inverse tan on (- % ,% .

IfA=0,Q, =0, K, =0 and B,, R,, are constant, then case i holds
i i° 1] '

i

and T can be taken arbitrarily large.

0
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2.4, Finite Horizon: Uniqueness of Analytic Nash Strategies for
Analytic Differential Games

2.4.1. An Analytic Nash Differential Game

Consider the sets U, and U, defined as follows

1 2
= 1oty - .
1 (to,tf) Z R, fixed
(2.81)
= {SIS;_R“X I, S open, connected and projection of S on I=1I}

m,
= . p— 1 i { =
Ui {uilui : Si R =, for some SiGZ, uy analytic on Si}, i=1,2.(2.82)

Ul and U_ will be called the strategy spaces. Consider also the fixed time

2“ n rn1 m2 a n
interval [to,tf] € I and the functions f: R XR "XR “XI =R, 8; * R - R,

1

m m
Li : RnX RIXR 2x1I- R, i = 1,2, which are analytic everywhere in all their

arguments.

. E . +
For a given (ull u2) U, x v, with S!ﬂ SZGZ we consider the

dynamic system

x(£) = £0x(t),u; (x(£),£),u, (x(),t),t)
(2.83)
x(t) = x5 (x,t €S NS,, t st st

Definition 2.1: A pair (ul,uz)EUlXU is called playable at (xo,to) if

2

s. N SZEZ and the solution of (2.83) exists over [to,tf]. (It will neces-

1

sarily hold: (x(t),l:)ESlu’\S2 tE[t:o,tf].)

For a related definition of playability see [23]. 1If (ul,uz)

is playable at (xo,to) we consider the functionals

te

I (upnu) = g (e o)) + [ Lo(x(E),u; (x(6),t),u, (x(£),t),t))dt
iv1’m2 i f ¢ i 1 2 (2.84)

o
i= 1,2.

is said to be a Nash equilibrium pair

. * %
Definition 2:2:A pa'ir (ul,uz) € U, x U,




\an

o o a e

for the Nash game associated with (2.83) and (2.84) on a set So=Sﬁ(Rnx[zo,tf])

for some SE€I if and only if:
(1) it is playable at all (xo,to) €S,

and

*

. * % * -
(ii) Jl(ul,uz)le(ul,uz), .(ul,u2

) € Ul % U2 playable at (xo,to) (2.853)
* * * * 1 b1
Jz(ul,uz) s Jy(up,u,), V(ul,uz)e;le U, playable at (x_,t ) (2.86)

fOI all X ,t € S .
( (o] O) [o]
Ihe fOllOWlIlg thEOIEIﬂ concerns th.e exlistence a[ld unlqu8tleSS Of

Nash equilibria.

Theorem 2.8: Assume that there exist two analytic5 functions Gi and ;2,
m,

- n n,.n i . _ - -
ui tRXIXR XR —R i=1,2, such that ul(y,s,ql,qz) and uz(y,s,ql,qz)

are the unique global solutions5 of the minimization problems

min qi'f(y,ul,uz,S)+Li(y,u1,u2,5) (2.87)

where
n
(7,5,4;,8,) €R"X IXRTXR™.
Then a necessary and sufficient condition for (uf,ug)élhj(uz to be a Nash
equilibrium pair is that

_ oV, (y,s) 3V, (y,s)
ui‘(}':s) = Ui(y,S, 3y 3 dy )

i=1,2 (2.88)

5In relation to this see for example [21], p. 152.
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where Vl(y,s), Vz(y,s) are the unique real valued analytic solutions of the

system of partial differential equations

V. V. v, Vv vV, 3V
i i - 1 2, — 1 2
3s +ay f(}’:ul(y,ss 3y ° ay):uz(y’s: dy a}')’s)

_ av, 3V, _ av, v, 2.5
+Li(Yaul(y:ss E_’a_y-)’uz(yys: _6793;_),5)-0 1.-1,2 .
with initial values

= P n
V;Gstp) =g, 1=1,2, Vy€Rr., (2.90)

xU,.

If such (uf,ug) exists, then it is unique in Ul 2

Proof: Let (uf,u;)e le U, be a Nash pair. Then the functious

2
e
Vi (7,8) = g (x(tg)) +[ L; (e(£),uf (x(£),£),u5 (x(£), ), t)dt (2.91)
] i=1,2
where
x(t) = £(x(£),u](x(t),t),uf(x(t),t),t),x(s) =y, t €ls,t.] (2.92)

are analytic in y,s (see [20], p. 44 and [24], p. 87, Theorem 4.3) and

are the solutions of (2.89), (2.90). This is true since 2.89), (2.90) are

just the Hamilton-Jacobi partial differential equations for the two control

problems (2.85) and (2.86) (see [24), p. 83, Theorem 4.1 or [22], Theorem 1). The

sufficiency part follows from Theorem 4.4, p. 87 of [24]. The uniqueness
of the solution of (2.89)-(2.90) within the analytic class is an immediate

consequence of the Cauchy-Kowalewsky theorem (see [25], p. 40). C

2 e DA




One can obtain the system (2.89)-(2.90) of partial differential

equations, under assumptions much weaker than ours. Nontheless, the results
available concerning existence and uniqueness of solutions of general systems
of partial differential equations are complicated. Also, they usually assume
boundness of the range spaces of the sought solutions and of the domains of
the independent variables, assumptions which we did not make.

2.4.2. The Linear Quadratic Case

Next, we apply Theorem 2.8 to a linear quadratic game. Consider

(see [22])

X = Ax + Blu1 + Bzu2 + f(t), x(to) =xo, t G[to,tf]
y1 = Clx, y2 = sz
. tf (2.93)
J, = - - 1 - t
LT3 {t‘]' [(zi yi) Qi(zi yi) + ui'Riiui+ujRijuj]dt +

o

+ x(tf)' Kifx(tf)'} , L =1,2, i#].

where A, Bi’ £, Ci’ Qi’ Rij’ z, are analytic functions of t over all

tl, 1 and = ' = [
( o tf) n Qi Qi >0, Rij Rij >0, Ri,1 >0, ¥t E[to, tf].
Kif = Kif > 0 are constant matrices. All the matrices are assumed to be of

appropriate dimensions.

Corollary 2.1.Assume that Kl(t)’ Kz(t), gl(t), gz(t), Ql(t), Qz(t) are

solutions of the differential equations
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v = + K.S
K, = K S;K, +KSK +K

; T Ky 1Ky T KpSoKy

- K. - K.S, K,
RiSKy = X8; 4%y = K3%45%

- A'K, - - - ¢! Q. c,
A'K, - KA - KSR, - € Q€
B = K;Si8) * KiS18; T K5y F K58y (2.94)
1 -A'g, -C!Q,z +K.f
, : - (R S 8y *KyS; 48 T RS, 8;) AT "0 Ty

1 1
= ' ' -— ! - - ] 1
€1 glslgi * gzszgi 2 gisigi gisijgj.+2 ziQ f'g

Z, " .
11 1

Ki(Eg) = Kips 8,(5g) =0, &, (t) =0, i =1,2

- where
. S, =BR'B! i=1, 2
i i7ii7i ?
S. . =BRR,RB', L#§, i.9=1,2
ij 3Ly ’ ’
‘ Sij =0 i=3
Then
’ u, (x,t) = -R-lB' [K,x - g ], i=1,2
i ii i i i’ ’

constitute the unique Nash equilibrium pair in leU2 for the Nash game as-

sociated with (2.93), for any (x_,t )€ R x [E;,tf].

ez

Proof. Ki’ 8> éi’ are clearly analytic functions of t. The function
Vi(y,s) = %:(’Kix - gi x-+§i are solutions of (2.89) and (2.90) (in the
form that (2.89) and (2.90) assume for the problem (2.93)). Thus, the

previously stated Theorem applies. e

on

s o




CHAPTER 3

LEADER-FOLLOWER STRATEGIES AND NONSTANDARD CONTROL PROBLEMS

3.1. Introduction

In the present Chapter we analyze a Leader-Follower differential
game with fixed time interval and initial condition X where the leader
has current state information. Thus, the strategy space of the leader is a
space of functions whose values at time t depend on x(t), X and t, i.e;
:(t) = u(x(t),t;xo). Because %ﬁ appears in the follower's necessary conditions,
the leader is faced with a nonstandard control problem. This problem is
solved here. Actually we solve a more general class of such nonstandard con-
trol problems, of which the leader's problem is a special case.

The structure of this Chapter is the following. 1In 3.2 a two-level
L-F differential game is introduced. This game leads to the consideration of
a nonstandard control problem which is studied in 3.3. 1In 3.4 we use the re-
sults of 3.3 to study further the game of 3.2 and in particular we work out a
linear quadratic i-F game. 1In 3.5 the relation of the L-F game to the Principle
of Optimality is investigated.

Two Appendices to this Chapter are given at the end of the Thesis.

3.2. A Leader-Follower Game

In this section we introduce a two-level L-F game and show how it

leads us to the consideration of a nonstandard control problem. This non-

standard control problem falls into the general class to be considered in 3.3.

Let




m m

U= {uju: R" X[to,tf] - R 1, u(x,t)€R 1 for x€R™ and tG[to,tf],
ux(x,t) exists and u(x,t), ux(x,t) are continuous in x and
piecewise continuous in t} (3.1)

m,
vV = {v'v: [to,tf] - R 2, v is piecewise continuous in t}. (3.2)

Consider the dynamic system

k(t) = £(x(t), TL), V(t),t), x(r)) =x_, t€le ,t] (3.3)

and the functionals

t
£
3y = gG&(e)) +[  LGx(e), T(e), T(e),6)dt (3.4)
t
(o]
LT
@) = hGe(e)) +[ MG(E), T(E), T(E),t) (3.5)
t
(o]

where u€ U, v€V, x is the state of the system, assumed to be a continuous
. . . . 1 .
function of t and piecewise in C" w.r. to t, x :[to,tf]'*Rn, and the functions
n, M1 ™ n n n, ™™
f:R XR "XR x[to,tf]—-R,g,h:R—-R, L,M:R XR “XR X[to,tf] -R,
are in C1 w.r. to the x,u,v arguments and continuous in t. The u and v are

called strategies and are chosen from U and V which are called the strategy
spaces, by the two players, the leader and the follower respectively. With
the given definitions, for each choice of u and v, the behavior of the dynamic

system is unambiguously determined, assuming of course, that for the selected

pair (u,v) the solution of the differential equation (3.3) exists over [t ,t.].

Let us assume that a LF equilibrium pair (u¥,v*)EUXV

exists. For fixed u€ U, Tu is determined by the minimization problem

tscirnase

L e el SN A e
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minimize Jz(u,v)

subject to: vevV

;{ = £(x, u(x,t),v,t), x(to) =

X
Q

(3.6)

, t€ [to’tf]

and thus, applying the Minimum Principle we conclude that for VEV to be in

Tu, there must exist a function p :[to,tf] - R? such that

x = f(x,u,v,t)
“+ =
Mv fvp 0
-p = + + +
P Mx uXMU (fX uxfu)p

dh(x(t.))
ox :

x(t,) = x5 p(ty) =

(3.7.1)

(3.7.2)

(3.7.3)

(3.7.4)

We further assume that U is properly topologized. Conditions (3.7) define a

set valued mapping T' : U~ V. By using the nature of the defined U and V

and the fact that (3.7) are necessary but noc sufficient conditions it is

easily proven that
(l) Tu_C_T'u

‘ii) Jz(u,v') > Jz(u,v) Y:v'eT'u, vETu,

(1if) T'w NTu" 2 {v*} # 0.

Notice that Jz(u,v) takes one value for given u and any v €& Tu, while

Jz(u,v'), v' € T'u does not necessarily do so. We assume now the following.

Assumption (A) :

o

%
where UN is a n.b.d. of u‘ in U.

oo

Jl(u,v') 2 Jl(u,v) for v' € T'u, vE€Tu, uct€ U;

(3.8)
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1
For (A) to hold it suffices for example: T=T' on W." We conclude

that if (A) holds, then u* is a local minimum of the problem
minimize Jl(u,v)
subject to: u€U, vE€T'u

or equivalently

minimize Jl(u,v)

. (3.9)

subject to: uwugU, vev

x = £(x,u,v,t) (3.10.1)
_. = +

P M.x uxMu + (fx+-uxfu)p (3.10.2)
MV + fvp =0 (3.10.3)

Bh(x(tf)

x(to) =X, p(tf) = —————g;—-— . (3.10.4)

The problem (3.9) is a nonstandard control problem of the type to be comnsidered
in the next section, since the partial derivative of the control u w.r. to x
appears in the constraints (3.10) which play the role of the svstem differen-
tial equations and state control constraints, with new state (x',p')"

Notice that the leader uses only x(t) and t in evaluating u(x(t),t) and not

the whole state (x',p')'; i.e., the value of u at time t is composed in a

partial feedback form with respect to the state (x',p')'; (recall the output

feedback in contrast to the state feedback control laws). If one were
concerned with a LF game composed of N (> 2) hierarchical decision levels

([32], [33]), then the leader would face a nonstandard control problem where

lSee Appendix E,
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the N-th partial of u with respect to x would appear.
We will assume that the state-control constraint (3.10.3) can be

solved for v over the whole domain of interest to give

v = S(x,p,u,t) (3.11)

where S is continuous and in C1 w.r. to x and p. This assumption holds in many
cases, as for example in the linear quadratic case to be considered in section
3.4. 1In any case, direct handling of the comstraint (3.10.3) by appending it,
or assumption of its solvability in v, does not seem to be the core of the
matter from a game point of view, However the followine remark is pertinent
here. Assume that we allow V&€V, where

m
T = n 2 . . .
V= {vlv : R x [to,tf] - R 7, v(x,t) piecewise continuous

(3.12)
in t and Lipschitzian in x where x€ R" and t€ [torteld

instead of v€ V. The assumption of solvability of (3.10.3) will again give

v(x,t) = S(x,p,u,t). (3.13)
Since v(x,t) will be substituted in the rest of (3.10) with S(x,p,u,t) from
(3.13), the leader will be faced with exactly the same problem as after
substituting v(t) with S from (3.11). Therefore, no additional difficulty
arises if one allows V instead of V and assumes solvability of (3.10.3)

Substituting v from (3.11) to (3.10) we obtain

e

minimize. J(u) = g(x(tf)) + f i(x,p,u,t)dt
ue v o

subject to:




X Fl(x,p,u,t) (3.14)
L P J ~F21(XsP,Ust) + uXFZZ(x’p,u’t)b
ah(X(tf))
x(e)) = %, Bty) = ——t—

where i, Fl’ F21, F22 stand for the resulting composite functions.
Problem (3.14) is a nonstandard control problem like the one treated in Sec-
tion 3.3 where (x',p')' is the state of the system.

Besides the procedure described above which leads to the considera-
tion of the problem (3.14), there are other cases in which such problems arise.
For example, in a control problem where the state x is available, stochastic

disturbances are present, and the time interval [to,tf] is very large,

synthesis of the control law as a function of x and t is preferable over a

e i e e i Gk ST

synthesis not using x (open loop). 1In addition, U, might be penalized in
the cost function or be subjected to bounds of the form !ux(x(t),t)! < K, i

t €[t ,t.], where K>0 is a constant.

3.3. A Nonstandard Control Problem

Consider the dynamic system described by
. _ 1,1 2,2 m, m
x(t) = £(x(t),u” (b (x(t),t),t),u" (h (x(t),t),t),...,u (h (x(t),t),t),
ug (0 (), 0,6, o ul (e (0) 6 18 8 (3.15)

t€[t

L}
b

x(t) = x_, oot

. e iy i : *“%ﬂﬁ-..I-IlIIll-I-I-I----nh-ﬂl-l----m-llﬂ‘.ﬁ..i.hn.ﬂjii]'l
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and the functional
t

f
1,1
J) = gle(t)) +f Lx(t),u” (b ®(E),£),t),...,u (" (x(t),t),t),
o 1.1 m, m
u (b (x(E),£),8), .., (0 (x (£),£),£),£)de (3.16)
. q.
+ +
where the functions £ :anmn l“Rn, L :Rn-lm-i-mn+l_.Rn’ pt vg" 1"R t

n . . . 1 .
i=1,...,m, g :R —R are continuous in all arguments and in C with respect to
i . i _n+l_ % : L2
the x, u, u:('. The functions h™ :R -R ~, are continuous, and in C w.r. to x.

The solution x of (3.15) is assumed to be continuous and piecewise in

1 .
C w.r. to t. The time interval [to, tf] is considered fixed w.l.o0.g. (See [35],

page 27). We want to find a function u where

. q.
i i .
u :R X[to,tf]" R, i=1,...,m

i i . i, i i, i . .

ux(h (x,t),t) exists and u (h" (x,t),t), ux(h (x,t),t) are continuous in x
. . . . n .

and piecewise continuous in t, for x€R , tE[to,tff‘, i=1,...,m so as to

minimize J(u). We denote by U the set of all such u's. Therefore the
problem under investigation is
minimize J(u)

_ (3.17) 1
subject to u€U and (3.15)

A 2 ,
The restriction h € C° w.r. to xis somewhat strong. For example, the case
h(x,t) = x if to St = t1, h (x,t) =0 if t. <t St_, i.e. the state is

available only during a part of the [to, t ][ isznot included. Nonetheless,
it can be approximated arEitrarily close by a C function, like any function
which2 is only piecewise C°. Consequently, from an engineering point of view,
h € c° w.r. to x is not a serious restriction.
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{
This problem is posed for a fixed time interval [to’ tf] and a fixed
*
initial condition x (to) =X Therefore the solution u , if it exists,
will in general be a function of to’ tf, Xy in addition to being a function of
h(x,t), t, but we do not show this dependence on to, tf, X, explicitly.
We uge the notation 5
" ; -
' 2f oL,
du du
‘ fu =| . , mXn matrix, Lu =1 2 , mx1 vector
}
3f L :
' _aumA | 3u™ | ;
)
fi=—§i— » mXn matrix, i=1,.,.,m .
B(ux)
3 (3.18)
L. = —=— , nxXn vector, i=1,...,m ;
i a(ul)
” {
i
i auigzizq i i i i 93 |
uy = T s ¥ =(yl,---,y.,---,yl)'GR1
i_,1 i i . R
h (hl""’hj""’hqi) , i=1,...,m, J=l,...,qi
i i i i
) uy = (le---,uq.), uli {=9; X q; Hessian
' i ,
1
l JF = i eut)  dutgle) |
< 3% 1 i » DXl vector i=1,...,m X
3y y =h"(x,t) :
! =r,.1l: + m !
u, = [ux R SR nXm matrix. ;




It should be pointed out that the arguments used in Classical
Control Theory for showing that for the fixed initial point case, it is
irrelevant for the optimal trajectory and cost whether the control value at
time t is compssed by using x (t) and t or only t? do not apply here in
general, TIf u|t =u (t), t € [to, tf], then ux = 0 and this changes the
structure of problem (8). Consideration of variations of u is also needed
and this was where the previous researchers stopped, see [29]. This problem
is successfully treated here. We provide two different ways of doing that,
the first of which is based on an extension (Lemma 3.1) of the so-called

"fundamental lemma" in the Calculus of Variations (see [36)).

The following theorem provides necessary conditions for a function
u € U to be a solution to the problem (3.17) in a local sense: (we assume that
U is properly topologized). It is assumed in this theorem that the optimum

e

u has strong differentiability properties, an assumption which will be relaxed

later, in Theorem 3.2. The proof of this theorem is based on the following Lemma.

e}

m . on .,
> Ny :[to,tfj-‘R , i=1,...,m, ¥y :[to,tf]-*R R

Lemma 3.1: Let M :[to,tf]-*R

be continuous functions, such that

t t
f m £ i
I @ea@),nde+ T[N (£)) (y(£),t)de = 0
t i=17% 1 y
0 o
. . nor 1 n -1 LMt
for every continuous function 9 :R X _to,tf“-*R , where ¢« = (0 ,...,7 ) , and

< is in Cl w.r. to y. Then M, Nl""’Nm are identically zero on jto,tf;.

-

3This holds if i) the set of the admissible closed loop control laws contain

the set of the admissible open-loop control laws and ii) if u* is an optimal
closed,loop control law generating an optimal trajectory x*(t), then
vik(t) = uk(x*(t),t) is an admissible open loop control law.




i.

Proof; The choice ¢ = (0,...,0,6°,0,...,0)", ¢

i
[to,tf]+R,\o
continuous in t, i=1,...,m, yields MZ0 on [to,tf]. Since M=0, the
i

choice ®; = (0,...,y'¥,0,...,0)", © = y'¥, whgre v o= CPPR VR

¥ :[to,tf]-'Rn, ¥ continuous in t, results in Jl" N].'.(t)qI (£)dt =0, for every
t
o

such ¥, and thus Ni =0 on [to,tf] is proven in the same way as M=0 was

proven. o

The conclusion of the above lemma holds even if the restriction

. kl' ok oo,
i i ni i, . .
P (x,t) = Y1 RN -t is imposed, where kli""’kni’)‘i are nonnegative

integers, since the polynomials are dense in the space of measurable functions

on Tt ,t.1.
ot e

f
Theorem 3.1 : Let u* €U be a solution of (3.17) which gives rise to a trajectory
I”1 = {(x*(t),t)lté[to,tf]}, such that uliare in C1 w.r.20 X in a n.b.d. of

, y
{(hl(x*(t),t),t),t EEto,tf]}. Then there exists a function p: [to,tf]-Rn such
that q;:

. m 1 4 i
-p(t) = L +£p +i§1 j§1”jvxxhj (Ly+£.p) (3.19)
L, +£p =0 (3.20)
it - o
Vxh (Li+fip)— 0, i=1,...,m (3.21)
og(x(te))
p(te) = = (3.22)

hold for té[to,tf], where all the partial derivatives are evaluated at

x*(0), o et ), 0,0, w et ©),0,0,e.




The proof of this Theorem by using variational techniques and
Lemma 3.1 is simple but lengthy. For the sake of completeness, we give
it in Appendix F.

We give now a different derivation of the results of Theorem 3.1 ,
under weaker assumptions, which provides an interpretation for them and at

the same time an extension of the region of their validity. Let

Ek = {u ] u : [to, tf] - Rk, u piecewise continuous } (3.23)
Consider the problem

te

. e . - - _ — 1 m —_
mlinimize J(Il-,ul’°--’um) = g(x(tf))+{ L(X,U,Vxh (x:t)ﬁl"°"vxh (x)t)um>t)dt

o

. . - 1 — m -
subject to x = f(x,u,Vxh (x:t)ul:"':vxh (X’t)um,t)’ X(to) =x0, te[to’tf]

Geﬁm, Eieﬁqi, i=1,...,m. (3.24)

Clearly, if Jf, Jg are the infima of (3.17) and (3.24) respectively, it will be
R —m,_ ., — _
JffiJf' Also, if u= Gf}...,u )',ul,...,um solve (3.24) and give rise to x(t),

1 -
then a u= 01,...,um)'EU with

—ul(hl(i(t):t)’t>
; = T(e), w(hl(x(E),0),6) =ThT (x(8), 00, ()
W (0" (x (0,8, t) t=1,....m (.29

results in J2(u) = J(G,El,...,ﬁﬁ) and gives rise to the same x(t). However,

such u € U does exist. For example we set
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wF (0, 0),8) = al(6) hiGx,) + b, (e) (3.26)
where

ag(t) = T, (r) (3.27)

b, () = 3®) - al (' @), 0) (3.28)

i=1,...,m

This u satisfies (3.25). Thus, problems (3.24) and (3.17) are actually equivalent

in the sense that for each given (xo,to) they have the same optimal

trajectories and costs and their optimal controls are related by (3.25).
The conditions of Theorem 3.1 are now directly verified to be the : J

necessary conditions for problem (3.24), where one should use U and Ei in

r place of u and ulirespectively. More importantly, the conditions of Theorem !

. : e , ix | 1
3.1 hold if one considers simply u €U, without assuming that u ; isinC

. y 1
w.r. to x in a n.b.d. of {(hl(x*(t),t),t),t.é[to,t 1}. This weakens the !

£
strong differentiability property of u* assumed in Theorem 3.1 . The

i , . .
relative independence of u, u {» was exploited in proving Theorem 3.1 ,

y :
when the special form of the perturbation Q(y,t), y'W(t) (see proof of !

Lemma 3.1), sufficed to conclude (3.20) and (3.21). This independence of u and
uli was taken a priori into consideration, when problem (3.24) was formulated.

y
Clearly, even if higher order partial derivatives of u w.r. to
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. i . cigs
x appear in f and L, or if u,u ; are restricted to take values within

i

y
certain closed sets, the equivalence of the corresponding problems (3.17)
and (3.24) holds again (with appropriate modifications of the definitions

of ﬁ, U,, f and L). We formalize the discussion above in the following

theorem.

. -
Theorem 3.2: Let u €U be a solution to the problem

e

minimize J(u) = g(x(t.)) +[ Lex,u,u,...,ul,t)dt (3.29)
t
o

]

; . i m
subject to: x = f(x,u,ux,...,ux,t), x(to) =X s tE[to,tf

uév, (ul(hi(x(t),t),t),...,um(hm(x(t),t),ull(hl(x(t),t),t)',...,

y
WL T (E),6), ) DEV (3.30)
y
where Vgi R™F ™ is closed. Then there exists
p: [t ,t] = R" such that

95 .

. LI i
-p = Lk'+fxp'+i§1 jglujvxxhj(Li+fip) (3.31)

LGk (e), ut (hh (e (8),8),8),. 0, ™ (WP Ger (), 6),8), ul (bl Ger (), ), 6),
peres W (xR (8),8),8),t) +
+ £ er(e), u o (e), 1), 60,0, BTG (e),0),6), ulh (e (), ), 8),

peees W M GR(E),£),8)F p(E) <

(3.32)

1 m 1
S LGR(E), qgy---5dn, VR (6¥(6),8)q), . .,0 T (k¥ (E),E)q_,t)

1 m 1 "
FEGR(E),q 50050, TR (KR (E),E)qp, 0,9 0T (xF(E),E)q Lt )

Vl m '
(qo,...,qo,ql,...,qm)Evo,




i€ e O AU O ¢ WA 3= 245 1 Tad e = T A A

og (x* (t))
P(ty) = ——— (3.33)
for tE[to,tf] . c

It is remarkable that the established equivalence of the problems
(3.17) and (3.24) refers to the optimal trajectories, costs and control values.
It does not refer to any other properties, such as sensitivity, for example.
It is thus possible, that different realizations of ui(hi(x,t),t) other
than (3.26) may enjoy sensitivity or other advantages. The following pro-
position provides information for tackling such problems.

Proposition 3.1.

(1) If u and v are elements of U, both satisfying (3.25), so does
Au+ (1-A)u, VAER.

(ii) Let m=1, hl(x,t) = x, and EI’E’EI be scalarvalue functions of

1
t,t€lt ,t_.]. Then the function
o’ f _
7y (xy=%,(£))_ - -
ux,t) = e u (e) + [y(e)-x; (B)u ()] [x;-%; ()]

satisfies u(®(t),t) = u(t), ux(§(t),t) = ul(t)

(iii) Let x, u, Txl be as in (ii). Assume that the scalar valued

functions u(x,t), v(x,t) satisfy u(x(t),t) = vE&E(t),t) =

W(t) and ux(Tc(t),t) = vx(?(t),t) =T11(t:). Then so do the
2uv u2+v2-‘
functions v’ «.}uv,\—-z—-—

behaved. =

, assuming that u and v are properly

The proof of this proposition is a matter of straightforward verification.
The assumption in parts (ii) and (iii) for scalar valued quantities

actually induces no loss of conceptual generality, since it can be abandoned

at the expense of increased complexity of the corresponding expressions
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of course.

[P

The nonuniqueness of the solution u to problem (3.17) is obvious

I

in the light of (3.25) and Proposition 3.2.Nonetheless, this nonuniqueness
. : i . i
is a nonuniqueness in the representation of u” as a function of h™ and t,

ulih:are the same for all these representations. The non-
y .
uniqueness of u|t,u}ﬂt, if any, can be characterized in terms of the

while ul

B ¢ IO SRR

possible nonuniqueness of the ai(t), bi(t) (see (3.26)), where one, w.l.o0.g,

A i

restricts ui to affine in hi controls.
.Oﬂe very basic difference between problems (3.17) and (3.24) is the {
following. It is clear that the principle of optimality holds for both of
these problems, in the sense that the last piece of each optimal trajectory
is optimal. The existence of a closed loop control law (T(x,t), ul(x =5 SRR 4
um(x t) which results in an optimal solution to problem (3.24) for every initial L
point (xo,to) in a subset of R" ntl is guaranteed under certain assumptions, see E
[24]. A corresponding statement does not hold for problem (3.17), i.e. in general.
there do not exist functions u~ of h (x,t) and t such that u-—(u yeeasu ) s

an optimal solution to problem (3.17) for every initial point (xo,to) in a subset{

+ . .
cf Rn 1. This can be easily seen to hold by the following argument. Let
such u exist. Then, i
1,1 1 ]
(@ (b Ge,8),8), o (0™ 0, 0) 00,0t (b G t),0) L ), )
y y ?

is a closed loop control law for problem (3.24). This implies that there must
. . —— - . — —m )
exist a solution (u,ul,...,um) with u= Gf}...,u ) of the partial differential

equation of Dynamic Programming associated with problem (3.24) which satisfies

= Oemras

. . . -1
i i, i i —
T (x,t) = ut i (x,t),t) and 91’—-8%21 = 7 h'(x,t) T, (x,£), 1=1,...,m, which




| ﬁI

is not in general truef‘This difference between problems (3.17) and (3.24) empha-
sizes the fact that their equivalence holds in a restricted fashion, i.e. for each
initial point considered independently and not in a global fashion, like a

closed loop control law treats the initial points.

Two final remarks before entering the next section are

pertinent here. First, that the established equivalence of the problems

(3.17) and (3.24) reduces all questions of existence,uniqueness,controllability
and of sufficiency conditions for problem (3.17) to the corresponding ones

for (3.24). Any problem of the form (3.17) where terminal constraints and
control constraints are present can be solved and necessary and sufficient

conditions can be written down in as much as this can be done for the problem

(3.24) with the corresponding constraints considered in addition. Second,
Theorem 3.2 still holds if instead of the initial condition
B 8 o' 8!
X

A . o LY = = '
x(to) =X, it is given: x (to)-—xo and x (tf) Xgs where x x , )y'.

In this case, (3.33) is modified to

. 38 ¥ (£,)) 3h G ()
~ P (tg) =————%— andp(t)=—"—"F— (3.34)
4 d3x ) 3(x")
where the more general cost functional
e
3= g6+ hedE )+
g(x (te))+ h(x (£, +°t L(x,u,t)dt (3.35)
[0}

is considerel (see [35]). i

a : . i N

Imposing the condition ?Fl =V hl.u., where @ (xlt),ﬁ, (xlt) are given in !
aV(x t) X X 1 1 :

terms of __E;L__ , where VTxlt) is the value function for the control problem

(3.24) results in a zondition that V must satisfy in addition %o being a solution

of the dynamic programming partial differential equation. This procedure can

be used to single out a class of control problems (3.17) where a closed loop

control law exists.

: sl -&‘“Aﬂ-ﬂIIl--Illl-I--.-n--u-ﬂihiﬂh---lﬂiﬁui-.lﬂii..i‘l
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3.4, Solution of the Leader Follower Game

In this section we analyze the LF Game of Section 3.2 by
using the results of Section 3.3. 1In particular, we work out a

i
Linear Quadratic LF Game, where the leader is paralized for u

as well.

Let us consider the LF Game of Section 3.2. 1In this case,

the h''s for the leader (u), are

hi((x,p),t) = [T s 0 s (71 =x, i=1,...,m;

and the hi's for the follower (v) are identically zero. Different hi's may
be used to model different information structures in terms of x(t), and t
available to the leader and follower at time t. Thus Theo;em 3.2 is
applicable and can be used for writing down the leader's necessary
conditions. From the results of the previous section, we conclude that the
solution for the leaders u -if it exists -is not unique. It is interesting
to notice that (3.26) implies that the leader has nothing to lose if he commits
himself to an affine in x, time varying strategy. With such a commitment,
the leader does not deteriorate his cost, does not alter the optimal
trajectory, and also the follower's optimal cost is not affected. More
noteworthy is that the affine choice for the leader can be made even if

£, L, M are nonlinear and u, ui are constrained to take values in given
closed sets. In addition, v may be constrained to take values in a given
closed set in which case (3.10.3) should be snhstituted bv an appropriate
inequality. 1In accordance with the discussion in the previous section, we

have that in general there does not exist a strategy u (x,t) which is optimal

+ 1

- verv fnitial point (xo,to\ in a subset of R"
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Let A = (A},A))' denote the adjoint variable for problem (3.14) with
Kl’ kz corresponding to x and p respectively. Then, condition (3.32) results
in

[MU(X’U,S(X,P:U:t):t)+fu(X,U,S(X,P:u:t),t)P]lé =0 {3.36)
Yte [to,tf]
which will generally make the leader's problem singular ({34]. This is to be

expected, because the leader exerts his influence through the time functions

resulting from u and u s which are actually quite independent, and u is not

penalized or subjected to any constraint in the initial formulation (2.3)-(3.5).

In other words, the leader is more powerful than what a first inspec~
tion of the original problem indicates. One way to restrict the leader's
strength or to avoid the singular problem could be the inclusion of ui in L,
i.e., L= L(x,u,ui,...,uz,t), which would model a self disciplined leader,
or to impose a priori bounds on u_, for example, Hui” SK, V te€ [to,tf]
which could be interpreted as a constitutional restriction on a real life

leader.

It could be suggested to the follower to penalize ui in his
criterion while ui is not penalized in the leader's criterion. This would
lead to the appearance of uix in (3.14) (assuming uix exists). Thus, in ad-
dition to (3.36) a similar condition due to Uix appears which reinforces the
singular character of the problem. If the leader now restricts himself to
affine strategies in x, then uix = 0 and the resulting optimum is as before.
Actually, the leader can restrict himself to a quadratic strategy in x

(without affecting his global optimum cost and trajectory) having thus three

e

S VT




influences on the system, namely u, U u;x, from which only u is penalized
in the leader's criterion. Therefore, the leader will do better. For the

follower it is not obvious if he will do better or not.

Let us work out a Linear Quadratic LF game. The leader
is penalized for u; as well, by including it in L. We consider the dynamic

system

x = Ax + Bju + By, x(to) =x, t€ [to,tf] (3.37)

and the cost functionals

t
- 3. (u,v) = Sx'K +Ff‘ +u' + vy +m"‘i' Lyde] 8
1 (v XK exe dt (x le u Rllu v RIZV .Elux Riux)dt (3.38)

o i
1 tf,

= =[x/ + +u' +v! 3
Jz(u,v) Z[XfKfof ft (x sz u R21u v R22v)dt 1 (3.39)

o

where the matrices A, Bi’ Qi’ Rij’ Ri are continuous functions of time and

Q,, R R, >0, R,, > 0 are symmetric. R

>0 i te [t ,e.l,
10 R0 8y 11 0 is nonsingular ¥ [ o’tf

22

which guarantees (3.11).The follower's necessary conditions are (recall (3.10)).

- -1
% v = -RZZBép (3.40)
%= Ax + B.u - B.R.LB'p (3.41)
1 2802 :
. - - - 1 _ '
P Q2x uxRZIu A'p uxBlp (3.42)
x(€)) = x5 PlEg) = Koexpe (3.43)

Therefore, the leader's problem is (recall (3.9), (3_14))5

SWe assume that Assumption (A) holds. See also Appendix E.
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t

£
. . > ] + ) +
minimize J(u) = [x Klf £ ft (x le u Rllu
o
(3.44)
+p B 'p+ glu Rju yde)
22 12R22 2PT 2
subject to:
. -1,
= - -+ -
S = o oAt _ oo
P Q2x A'p uxBlp uxR21u (3.46)
x(t ) = %, plty) = Kox . (3.47)

The necessary conditions for the leader in accordance witn Theorem 3,2 are

(3.45), (3.46), (3.47) and

] 1 =
Ripv + BiAp - Ryjud, =0 (3.48)
[R Ul . . Ruml] +)\ (R u+B' )l = 0 (,) 49)
1'x .°°°2 m, x 2421 1P 3.
MOTqx - AN+ QA (3.50)
= +
*, 2R22R12R2232p + BszzB MoTA, T BuUL, (3.51)
MCep) = Kpexe, A, (ty) = 0. (3.52)

For simplification we assume further that

R, =Y;I, y;=Y>0,i=1,...,m

(3.53)

and (3.48), (3.49) are easily solved for u and u to yield




[,

2 2

I A, N
u = -[IF =0 Ry Ry I IBpA + = Ry Bypl (3.54)
= - L ! ¥ ! =4
u g kz[p B, tu RZl] (3.55)

which can be substituted into (3.43), (3.46), (3.50), (3.51) to yield a nonlinear
systém of differential equations, with unknown x, p, ISE) XZ and boundary condi-
tions (3.47) and (3.52). If v -+ 4+, then (3.54) and (3.53) vield u, > 0 and

u - -Bill, and thus the solution tends to the open loop solution, i.e.,

u = u(t) v = v(t), as the resulting form of (3.45), (3.46), (3.50), (3.51)

indicates for v > +» ([27],[28]).

3.5. Relation to the Principle of Optimality i
It has been shown in [29] through a counterexample that the Principle |

of Optimality does not hold for LF games. To make this statement more

precise, let us assume that the LF problem of Section 3.2 has been solved

in [to, tf] and x* is the optimal trajectory. While the processis a:(x* (T),T),

g we stop and solve the same LF game on [E, tf]

. s e - o JF = —%
with initial condition x (t) = x (t). Let x be the optimal trajectory for

where ty <fg <t

-
the second problem. Then x does not have to coincide with the restriction of

s -
x omn [t, tf]. The explanation is the following. The leader is faced with the
control problem (3.14) which has boundary conditions x(to) = X and

3 (x (t,))

r} * * 4
P (tf) - *a given at to and tf. let (x , p ) be the optimal

trajectory of this problem. If the leader is asked to solve the same control
- _ - Sho (x (t,))
problem on [t, tf] with boundry conditions x (t) = x (t) and p (tf) R va—

- *
there is no necessity for p (t) = p (t)!

- it ..____-4‘ ' d
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Even more, if )\1’ )\2 are the adjoint variables of the leader's control problem
on [c , t ] and A 1’ I are the adjoint variables of the leader's control

problem on [t tf], corresponding to x and P respecth vely, it will be

dg (x %t.)) _ % (x(tg)) _ _
]. (tf) = _a-;_—’ 2 (tO) = O, )\1 (tf) —"—ax___, >\2 (t) = 0,

If the Principle of Optimality were holding, it should be >\2 (-t_) = IZ (E) =0,

which is not true. Actually, Xz (t) = 0, Yt€ [to,tf] is a necessary

condition for the Principle of Optimality to hold The condition

?\2 (t) = 0, V€ [to, tf] can be used for deriving more explicit conditions

in terms of the data of the problem for the Principle of Optimality to hold.
Let us consider the linear quadratic game of Section 3.4. As it

was shown in the preyious paragraph,}\2 (£) = 0 V& [to, tf], is a necessary

condition for the Principle of Optimality to hold. With ?\2 =0, (3.51) yields

-

-1
2R22R12322 2P+ ByRyyBoRy = 0

from which, by assuming rank B2 = m,, we obtain equivalently

- =Llo ! =
Ry pRypByP + BoAy = 0.

Also, (3.49) yields

u =0, i-= l""’ml‘ (3.56)
We conclude that under the assumption rank B2 = My, (3.45)-(3.52) simplify
to give
;=Ax+glu+32v (3,57)
N = . - pl
1= tqx - A (3.58)

Loaa

e
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o o N (3.59)
Rjju+ Bih) =0, R,v+ Br =0 R
= )\, = .
x(to) X s l(tf) Klfxf (3.60)
p = -Q,x - A'P (3.51)
- -1_, ' (3.62)
v = -Ry,B,P .
= - 3.63
P(tg) = KyeXp. (3-89

(3.57)-(3.60) show that the leader's problem can be considered as a team problem
under the "constraint” (3.56), with optimal solution, say (u*,v*) and (3.61) -
(3.63) show that the same v* must be the follower's optimal reaction to
the leader's choice u*..Actually (3.56) is not at all a constraint, since
with Kz E 0, (3.46) (where ui appears) is not really considered by the leader.
So, the leader operating under (3.45) and wanting to minimize (3.38) may as well
choose ui = 0, since he is penalized for ui, while ui does not appear in (3.45). -3

The same analysis and conclusions carry over to the more general
game of Section 3.2 (see (3.1)-(3.5) and (3.1l)),since the condicion kz 2 0 on
- [to, tf] comes from the demand that the transversality conditions hold

Ye€ [to’ tf] and is not affected by the fact that in (3.4) ui is nc: penalized.

Notice that if the leader's cost functional (3.4) is substituted by

t m
f 1 i i
Jl(u,v) = g(X(tf)) + ft {L(x,u,v,t) + T ux'Riu;}dt
o i=1 (3.64)
A J
R, > 0, i= 1,---,m1

then (3.56) holds again. lf
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The idea behind the condition Xz = 0 on [to,tf] is that the leader
is not really constrained by the follower's adjoint equation and therefore

the leader's problem, being independent of the follower's problem, becomes a

team control problem.

In conclusion, a necessary condition for the Principle of Optimality
to hold for the LF games of Sections 3.2 (and 3.4), is that the leader's

problem is actually a team control problem. But for a control problem with

fixed initial conditions, the Principle of Optimality does hold. We thus

have the "if and only if" statement: The Principle of Optimality holds for

the problems of Section 3.2 (and 3.4) (see (3.1)-(3.5), (3.11) and (3.37)-(3.39)

respectively) if and only if the leader's problem is a team control problem

for both the leader and follower.

e et it = s ot 1en
' " _ y .
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CHAPTER 4

SUFFICIENT CONDITIONS FOR LEADER-FOLLOWER AND NASH
STRATEGIES WITH MEMORY

4.1. Introduction

In the present Chapter we consider a continuous time deterministic
differential game with a linear state equation and quadratic cost functionals.
We consider the case where the players have at each instant of time recall of
previous values of the trajectory, i.e. they have memory. Both LF and Nash
equilibrium concepts are considered and sufficient conditions are developed
for a class of problems to have solutions affine in the information. Particular
emphasis is placed on the LF case.

The structure of this Chapter is the following. In 4.2 we give an
example of an LF game where the leader by using previous values of the state
forces the follower to such a reaction that the leader's final cost is the same
as it would have been if both leader and follower were striving to minimize
the leader's cost. The main steps in solving this example serve as an illustra-
tion of how a more general case should be analyzed. In 4,3 we derive sufficiency
conditions for optimality for a control problem of a special form (of interest
on it's own) which are used in the next sections. In 4.4 we apply the results
of 4.3 to a LF game where the leader has recall of the previous trajectory and
the game is such that the solution of the LF game (u*,v*) minimizes the leader's
cost over all admissible (u,v), i.e., the leader's problem is actually treated
as a team problem of both the leader and follower. 1In 4.5 we consider certain
special cases and generalizations of the LF game of 4.4. 1In 4.6 we apply the
results of 4.3 to a Nash game where the two players have perfect recall of the

whole previous trajectory. One Appendix to this Chapter is provided at the end

of the Thesis.
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4.2. Introductory Example

In this section we provide an example of an LF differential
game where the leader uses the previous values of the state in calculating
his control values. The game considered is such that the leader, by using
this type of strategy forces the follower to such a reaction that the
leader's optimal cost is the one he would achieve if both leader and follower
had as their common objective the minimization of the leader's cost; i.e.,
the leader's problem to minimize Jl is actually treated as a team problem
where the team is composed by both the leader and the follower. A similar idea
is used implicitely in [44]. The strategies found provide an LF equilibrium
pair, with the property above, for any X- Also, the dependence of the
leader's control values on previous state values is not trivial in the sense
that the same result - team solution of the leader's problem - cannot be
achieved by strategies depending only on current state value's information.
We develop the example in such a way that the proof of the optimality of the
indicated strategies is clear. Actually we do not give only one example- but
provide a way of constructing a whole class of Stackelberg games with the

above properties.

Consider the following state equation and cost functiocnals

x=2x +tu+v R x(0)=x°, t€l(0,1] (4.1)
2 nl 2 2 2

I, = 4x(1) +% (6x° +u® +v°)dt (4.2)
2 1 2 2

J, = 2x(1)° + [ (q x“+rv7)de (4.3)

2 %




where x, u, v are scalar-valued. The solution of the problem

minimize Jl
u,v (4.4)

subject to (4.1)

is
T= -2kx, T = -2kx (4.5)
where k solves -k = 3-+4k-4k2, k(1) =2, and is given explicitly by ;
8(t-1)
10 - 23 (€1
We want to show that there exist q, 1, ﬂl, 32, so that
the problem
minimize J2
v L
subject to k¥ = 2x +J?,lx +2zz+v ,  x(0 =X (4.7) ,1
]
Z2=x , z(0)=0 : 3}
. i
has the solution @g
= 4.8 i
vE S X ot e,z (4.8)
and that
zl(t)x*(t)+z2(t)z*(t) = -2k (t)x*(t) , t€[0,1] (4.9)
vk = b (E)x%(E) +u, ()2 () = ~2k()xx(e),  t€[0,1] (4.10) |
2,(e) £ 0 t€[0,1] (4.11)

|
|
|
|
i

for any x, where x* is the common optimal trajectory of the problems (4.7) and

and (4.4) since (4.9) and (4.10) will hold.
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It is clear that if conditions (4.9) and (4.10) are satisfied, then
the pair (u=l,1 (t)x(t)+22(t)£tx('r)dr, v=-2k(t)x(t)) constitutes an
LF equilibrium pair for the LF differential game associated with
(4.1)- (4.3) and where U={u|va1ue of u at time t is given by u(xt,t), where
xtGC([O,t] ,R), xt(e) =x(@) Vvs8€lo,t], u(xt,t) is Frechet differentiable in X,
and piecewise continuous in t€[0,1]}, V={v|v is a function of x(t) and t, i
at time t, v(x,t) is continuous in x€R and piecewise continuous in t€[0,1]3.
We set i

a(t) = 2 -4k(t) (4.12)

and thus the optimal trajectory for the problem(&hl*) is

t 1
[ . , . f @ (T)dr (4.13)
s x*(t) = eo .xo
. J‘Toz(o)dcr (4.13) , .
z%(t) =£ [eo ldT x
o .

The solution v* of (4.7) is

1 ;
vk o= . = (plx +P22) (4.14)
1
where i
' by = 2Q2+4)p, +2p, +q - = p 1) =2 P
1 1771 2 q r p]_ > Pl( ) J
b, = 1 _
- 12 ) .
Py = 240y - T P , Py (1) =0. |

Substituting (4.13) and (4.14) in (4.9), (4.10) we obtain i

Py = 2r k-pch

= -2k - 4.
2, = -2k - Ly (4.16)
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t
where . VPToz (c)do M a(r)dr
oy = ( e ar) (e y. (4.17)
0

(Since ¥ =2z/x, it is easy to see that <,5=2-(2-4k)cp.) Substituting pl,zl from

(4.16) into (4.13) we obtain further

20,85k = (p, +0p,) - q+4rk? + 6r -2tk = 0 (4.18)
. U 1 )

-y = £, (2rk-p,9) - (2-2k-2,9)p, + py - (2rk P,®)P, (4.19)
. 12
TPy T 2Py Py (420
2r (LHk(1) - Pz(l)@(l) =2 (4.21)
Py (1) =0 ‘ (4.22)
py(1) = 0. (4.23)

From (4.19)and(4.20),setting wA=p2 +9p, we obtain
@ = -2rkl, - @-4k)w,  w(l) = 0. ) (4.24)

Solving (4.18)for p2+cpp3 and substituting in (4.24) we obtain finally the

following system equivalent to (4.18)-(4.23)

. d
zchrk + zz[rk +2(1-2k)ork i (ork)] +

+ [5 20k +30-1k) +2(1-2k) 2rk? +6r-2iK)] +1 (1-2k)q -2 4l =c

(4.25)

-0 = 2£ ( _l. - 2 .
p3 2 W"QP3) r (W Cpp3) (“'-26)
w = 2001k - q + 4k’ + 6r - 2ik (4.27)
Py = W -9p, (4.28)
£,(1) = ¥(-11+4£(1) +q(1))o (1)t (4.29)
Py(1) =0 , (4.30)

r(l) = k. (4.31)
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We can choose now ¥, (, zz, Zl as to satisfy (4.25)-(4.31) and (4.16). We choose

£(t) to be a twice differentiable function of t€[0,1] with r(t)>>0,r(1)=%-and

q(t) to be a differentiable function of t. Obviously q and r can be chosen

so that the linear differential equation for 22 (4.25) with initial condition
(4.29) has the solution Zz(t) ¥ 0. For example let r = %,q = constant # 11.
Notice that the differential equation (4.25) for %, can be solved explicitly
for 12 as soon as r and q are specified since ¢ and k are known. Nonetheless
since ©(0) =0, the point t =0 is a singular point of this differential
equation. The singularity was sort of expected to appear since as it has been
shown in Chapter 3, the leader's problem is singular with respect to the
partial derivative §£E£§§51L52 of his control and arguments similar to

those in Chapter 3 can be used to show that this holds even for the case where
u is allowed to be of the more general form u(xt,t). Wotice also that the
only essential restriction on the follower's cost, in order for the leader

to achieve his team solution (allowing even 2250) is that r(l)=3%.

If the leader were allowed to use a strategy u(x,t) which is

perhaps nonlinear in the current state x(t), but he were not permitted to
uée previous values of the state, then it should again be true that
u(x*(t),t) =-2k(t)x*(t) for every X i.e.
"t (ryde “a(r)dr

u(e.b xo,t) = -2k (t)e X, on€ R é
from which we obtain that u is linear in x, Therefore, we concluce that for
the given example, if the leader wishes to achieve his team solution (for
any xo) when he applies his strategy and cannot do that with a
linear strategy in x(t), he cannot do it with a nonlinear in x(t) strategy

either. Therefore, use of memory is his only way to achieve his team solution.

- ~ it *HﬂﬂHI-HHIIHI-l-I----n-inu--uﬁ---I--I--u-“
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In the example presented here the two crucial steps were the

identifications (4.9), (4.10) and the use of the fact that the conditions (4.14),
(4.15) are sufficient to characterize completely the optimal reaction of the
follower o the leader's strategy u==21(t)x(t)-+22(t)g$x(f)df. Therefore,

in order to generalize the procedure presented to cases where more general

types of strategies are used by the leader, one should provide sufficient
conditions for the problem faced by the follower, in addition to imposing
identifications similar to (4.9) and (4.10). In the next section we prove
sufficiency conditions for a special type of control problem, which we will

use later in guaranteeing the optimality of the follower's reaction, when

the leader uses strategies represented as continuous linear functionals

over the whole previous trajectory.

4.3. A Countrol Problem With State-Control Constraints.

Consider the problem (P):

t
£
minimize J = % [f(tf)Fx(tf) + f (x' (t)Q(r)x(t) + u' (£)R(t)u(t))de]
“o (4.32)
subject to: X(t) = A(B)x(t) + B(B)u(t), x(ty) = x4 (4.33)
e i
FoaNe,9)1x(s) +,_tf [N, (£,9)]u(s)= a(®) (4.34)
to 0
u€l, o

where the matrices A, B, Q =Q' 20, R =R' 20, are piecewise continuous

functions of time, x (t) eRn, u(t) ERm, and the interval [to’tf] the matrix
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]
F=F'>0 rand q € L, , are fixed. The solution x(t) of (4.33) is assumed
’
to be absolutely continuous, so that (4.33) holds almost everywhere with respect
to the Lebesgue measure in [to,tf]. The integrals in (4.34) should be
interpreted as Lebesgue-Stieltjes integrals. The matrix valued function

] N(t,8), ﬂ:[to,tf] XR ™ kan is measurable in (t,9), normalized so that

] 0 , for o6& tf
w < )
s ‘(ﬂ(t,to), for 8= t,
E z
. .
3 ﬂ(t,e) is continuous from the left in 6 on (to,tf), T(t,8) has bounded
B variation in @ on [to,tf] for each t, and there is a c¢€ L1 1 such that
i
1] e, 1eell = e@] @ |, (4.36) ‘

.~ to 1 {
!
' for all t € [to,tf] and for all ¢ € C,- Exactly the same assumptions hold

for “1’ [to’tf] X R = kam with c replacing ¢ in (4.36).1 and ﬂl are given
3 for the problem (P). The dimension k is arbitrary but fixed.

Problem (P) is of interest to us since we will use the results
- of this section in the next ones where we will consider games with delayed
information structure. Nonetheless it is of interest on it's own. It is

worthy to point out that (P) is of a quite general form, since for example,
the problem (P')

te

minimize % [x'(tf)Fx(tf)+f (y'(t)Qy(t)+ui(t)R(t)u1(t))dt]
t

o}

tf t

subject to:x(t) = [ 4 n'(t,s)]x(s) +[ [d_%(t,8)15(s)
t t
o} o}
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tf 3
y (&) = [1d N7 (e,8)]x(s) (4.37)
t:0
t
£ 4 _
up(e) = [ 1407 (,8)1T(s)
tO
x(to) = X,

can be brought to the form (P) by introducing

tf .

u, (t) ={ (4 N7 (E,8)]x(s)
0
t
£ 2

Uy () ={ (4N (t,8))x(s) (4.38)
0

u, () = y(&).

Using (4.37), (4.38), (P') can be written equivalently

t
f
minimize ZL [x'(tf) Fx (t) +{ (ué:QuA +u1'Ru1)dt]
[s]
(4.39)
subject to x(t) = uz(t) +u,y(t)
t t t t
£ £ f f
w =[S wy = [lahe, g = [ landls u, = [ lan’1x (4.00)
t t t t
(o] [o] [o] (o]

where the role of x and u in(4.33), (4.34) is played now by x and
(E}ul,uz,uB,uA) respectively. Clearly (4.40) is of the form (4.34).

In the following theorem we give sufficiency conditions for optimality
for the problem (P). The proof is carried out by reformulating (P) as a

constrained optimization problem in a Banach space and is given in

Appendix G.
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Theorem 4.l:Consider the problem (P)and assume that there exist functions

n n
B [to,tf] =R, A eLm,k, x*: [tg,te] R, u*GLm’m, where W is of bounded

variation on [to,tf] and continuous from the right on (to,tf), and x* is

absolutely continuous, which satisfy (4.33), (4.34) and

t t

f £
- f (R(DU*(r) + B' (e)u(TMr + f ni(r,t)l(w)dT =0 (4.41)
t to
tf tf
k() - [ @mxt(n + A MuemdT + [ T oMmaT = (e (4.42)
t t
0

Then u¥*, x* solve @) .

It is easy to see that in case T, HIE 0, then (4.41) and (4.42)

b4

reduce to

R(t)u*(t) + B'(t)(t)=0

SR(t)= QEdx(E)HAT(E)R(E), Wit )=Fx(t.)
as it should be expected.

Theorem 4.1 can be easily extended to the case where cross terms u'lx
exist in the integrand of (4.32) and to cases where more general convex cost

functionals (4.32) are considered.

4.4, A Leader Follower Game with lMemory

Consider the dynamic system

x(t) = Ax(t) + Blﬁ(t) + BZV(::), x(t)) = x_, tE[to,tf] (4.43)

and the cost functionals

i Lm e A s ey aair Ui
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te

J, = 21 [x'(tf) Fix(tg) +j; (' (£)Q x(£) +u' (£)Ry u(t) +7(t) RIZV(t))dt(]4 4
o .

t
1 ' £ - - - -
3, = 5 x(tp) Fyx(ep) +[ (" (£)Q,x (£) +T' (E)R, U (E) +¥(t) 'Ry, ¥(t))dt]
to (4.45)
where the matrices A, Bi’ Qi=Q%ZO, Rij=Rij20 are piecewise continuous functions

of time over [to,tf] and R);» Ryys Ryy are nonsingular Vte[to,t The

f]'
matrices Fi=F£§:O and the time interval [to,tf] are fixed.
Consider the Stackelberg game associated with (4.43)-(4.45). The

admissible strategies of the leader are of the form

t
uGx,,t) = [ (4 i(e,8)Ix(s) (4.46)

o

where T is as in (4.35)-(4.36), so that u(-,t) is a continuous linear functional
on C([to,t],le) for each t€[to,tf]. The admissible strategies of the

follower are of the form v(x,t), xERn, t€R, where v is continuously
differentiable in x and piecewise continuous in t. All the matrices in
(4.43)-(4.45) are considered to be of appropriate dimensions. By X, u, v

we mean

x, ¢ [€,t] -Rr", x, ©) = x(®), vo,t€lt ,t.] (4.47)

£

a(e) = u(x,,t), V(t) = v(x(t),t) (4.48)

where x(t) is the trajectory of (4.43) for given u and v. For each choice of
u and v the behavior of the dynamic system (4.43) and the calues of Jl,J2 are
unambiguously defined, assuming that the solution of (4.43) exists over
[to,tf]. Actually when the strategy (4.46) is considered one might w.l.o.g.

restrict T to be 0 for s=t, tE[to,tf]. The costs of the leader (Jl) and

of the follower (J2) are functions of u and v. We denote by U and V the
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sets of the admissible strategies for the leader and follower respectively.

With these explanations the LF game associated with (4.43)-(4.45) is clearly
defined. '

In the sequel we single out a subclass of LF games with the nice
property that the leader achieves the best possible outcome for himself; i.e.,
the leader's and follower's strategies constitute together an optimal control
law for the control problem with cost functional Jl(u,v) subject to the

constraints of the state equation. The procedure followed is the
following: First solve the leader's problem as a control problem with
controls u,v. Let (G*(t),G*(t)),x*(t) be the optimum control pair and
trajectory, where G*(t),v*(t) are piecewise continuous functions of time.
Consider any function u€U such that G(xg,t)= ;}(t) W€ [to,tf]. Second,
solve the following inverse control problem: with u=u in the follower's

cost, and the state equation, minimize Jz(ﬁ,v) and seek conditions

so that v* solves this problem and the resulting optimal

trajectory for this problem is again x*(t). So, if these conditions are
assumed to hold apriori, then the pair (u,v*) constitutes a Stackelberg
pair. One may derive conditions, by solving the inverse control problem,
where u depends only on x(t), or on almost any subset of [x(T);t°<1'gt}

for each t. One may also single out a whole class of LF problems

where the inverse control problem does not have v* as its solution, whatever
is the u. For example if J2==f€3kt) V(t)dt, then v* will be optimum if and
only if v*(t)=0. It is trivia? to exhibit now a class of Jl's and A, B

1)
B,, 80 that v*(t) #0.

Consider the control problem




o
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minimize Jl
(4.49)

subject to U, V piecewise continuous functions of t

and (4.43)

Then (4.49) has the solution

=11

TR(E) = Ry B Rx(R),TR(t) = 12 B,Kx (£) (4.50)

where K is the continuous solution of

-1_,
KA +A' K+Q;- K[B1R1131+BZR12B2]K K(t) =F, tG[to,t

-K f] (4.51)
which is assumed to exist. Let @(t,to) be the transition matrix of the !{
resulting closed loop system in (4.43), i.e
aé(t,to)

at

- a-B.r L B'k-B o Lg! i,
= (A-B)R;B;K-B,R|,BK)B (t,t ) &(t ,t ) =1, t€lt .t ].(4.52)

Then the optimal trajectory x* and control values of @¢,¥ for (4.49) are

given by
x*(t;to,xo) = @(t,to)xo (4.53)
() = 11 11@(: £, )%, (4.54)
F (L) = R12 'R (t,t )x . (4.55)

Let T be as in (4.35), (4.36) with n(t,8) = O for 6>t and satisfy

the identity

{ (dTice,s)]e(s,t) = -R]._]]:(t)Bi(t)K(t), tele e l. (4.56)
[o]
1f T satisfies (4.56), then
- t t
u*(t) ={ [dsn(t,s)]é(s,to)xo =dyr‘ [dsT‘u(t,S)]x*(s). (4.57)
t

o o)
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(4.56) characterizes all the n's which result in the same u*(t) (4.54), i.e.
provides a class of different representations of T*(t) as a linear continuous
functional of x§={x*(e);t°§_e _<_':}- This class of M's is not empty, since
for example i
0 , for 6>¢t, t€(to,tf]
T(t,0) =4 -R] (E)BI(E)K(E), for e<t, t€(t_,t]and (4.58)

for esto) t =t°

satisfies (4.56). For fixed t, the set of all T(t,+) which satisfy (4.56) is
m,Xn

1
the hyperplane H ={N(t,") N, ) €Ny to’t] >R )s T(t,") perpendicular to
8(.,t)} shifted by T(t,.) from the origin in the dual space of C([to,t],Rnxn).

A useful class of M's which satisfy (4.56) is given by

T(t,s) = ﬁ(t,S)+Ho(t,s)+,§ A, (t,s)d(s-p, (t)) (4.59)
i=1l 1 1

m,Xn
where Ho is absolutely continuous in s for each t, Ai : [to,tf] XR-R

continuous, pi:[to,tf] =R continuous, d(s) =0 for s<0 and d(s) =1 for
s >0, and

t auo(t,s) P
Yy ¢<s,t)ds+i§1Ai(t,pi(t)>@ (Pi(t)st) =0 on [t ,t.]. (4.60)

o

Another 1 which satisfies (4.56) is

0, foreg 2t/2, te(to,tf]
/

0, forg>t, t=t

S
fice,8) =¢ -R]I(£)B] (O)K(E)] 8 (£,0)do - (4.61)
0

"

t-t i
for s<t/2, tE(to,tf]

\

-1 . -
Ry (E)B) (£ IK(E,), foro <t , t=t..
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Notice that

t'to
£ +—
o 2 -
ey = [ [d_fi(e,8)1x%(s) (4.62)
t
[o]

i.e. only the first half of the trajectory up to time t is used in

calculating T*(t).

y Theorem 4.2: Assume that there exists a function M* as in (4.35),(4.36) with

L M*(t,3) =0 for 8>t and an oxn matrix function P :[to,tf]-Rnxn which satisfy

v t 1

3 - 1

! { [a N*(t,s)18(s,t) = -Ry 1 (£)B; (£)K(E), t€le )t ] (4.63)
o

!. -1 1 _ =1 '

) R, (£)B, (£)B(t) = Rlz(t)Bz(t)K(t), tE[to,tf] (4.64)

¢ .

£
P(e) +[ [-a"(NP(1)-Qy (1) +1*' (1,£)B] (DP(m)

t

+.""|*'('r,t)RZI('r)Rﬁ(r)Bl'('r)K(‘r)}é(-r,t)dq-=F2§(tf,t), te[to,tf] (4.65)

Then the pair

t
u(x,,t) =.f’[dsﬂ*(t,s)Jx(s) (4.66)
B
vEG(E),E) = SRTIBY (DK(E)x(t) (4.67)
constitutes an equilibrium pair for the LF game associated with (4.43)-(4.45)
for any X, with strategy spaces U and V.

Proof: We set

X(t) = P(t)s (t,e )%, . (4.68)
Then the vector A\ (t) = (-l,f(t)')' and the control

-1_,-
v = -R,BN(r) (4.69)

satisfy the sufficiency conditions of Theorem 4.1 for the problem
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minimize J2 (u* (Xt sE),V)

(4.70)
subject to vEV and (4.43)

where u is kept fixed equal to u*, That the u* in (4.66) is the leader's best
reaction to v* in (4.47) is an immediate consequence of the fact that the pair

(4.66), (4.67) solves the problem (4.49). o

The case where the leader's strategy is allowed to be of the form

t
[ la (e, o)lye,s)
s
t
0
where y(t,x) =C(t,x)x(s), di C(t,s) =0, a.e. togsgtgtf with T(t,s)-C(t,s) as
s
in (4.35)-(4.36)can also be considered. The property di C(t,s)=0, a.e.

t,<s<t<t, allows one to write jt‘t[ds“l'](t,s)]y(t,s) =‘£tgs[ﬂ(t,s)c(t,s)]x(s)
and thus to use directly Theorem 4?1. We only mentionothat in this case
the leader has restricted memory and M*.C should play the role of T* in
(4.63)~-(4.67) in the corresponding sufficiency conditionmns.

For given M*, (4.65) is an integral equation for P(t). Since it
has a Volterra kernel, if in addition it holds that A'(T)-T*'(r,t)'B (T)
is bounded by some M for any tos TS t, toststf, then the Neumann series

for (4.65) is always uniformly convergent and furnishes the unique solution

of (4.65), see [48].. TIf T*(t,s) is of the form

pxm

k . .
n*(t,s) = iglﬂi(t)-ﬂi (s), H; (t) €R L H (s) € R™*P | (4.71)
then (4.65) can be written as
e
P(t) +j' {-a'(m) +ZHi(t)Hi('r)Bi('r)}P(7)‘I> (r,t)dT =F,8 (te,t) +
t
tf 1
+[{Qy (r)-M"(r,£)R,y; (TIR{] (T)B] (TIK(1)}8 (7, £)dr (4.72)

t

which is an integral equation for P with a kernel of finite rank and thus

its solution is of the form
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k :
P(t) = EOQ(to,t)-+i§1Hl(t)Ei§(to,t) (4.73)

where Eo’El""’Ek are constant matrices which can be found as solutions of
algebraic linear equations. In this case, checking (4.64) 1is easy as soon

as the Ei‘s in (4.73) are found,

1f (BéKB2)—1 exists over [to,tf], (it suffices that rank B, =m, and
Fl>'0), then (4.64) is equivalent to

-1

P(£) = M(E) +¥(t), M(t) = KB, (BJKB,) 'R, ,R]}

]
BZK 4.74)

Bz'(t)Y(t) 0 on[to,tf] (4.75)

and (4.65) can be transformed into an integral equation for Y.
Theorem4 .2 suggests that for an LF game with given

A, Bi’ Q> Ri Fi’ one may try to find T* and P which satisfy (4.63)-(4.65)

j;
and then consider (4.66), (4.67) as a solution. Also, by solving (4.65)

for Q2, one can exhibit a whole class of LF games with solution

(4.66), (4.67), where T, B, K, A, B, B R

1> Bos Fpo Ryps Ryps Ryy
are chosen as to satisfy (4.51), (4.52), (4.63), (4.64), F, =P(tf) and R21

is chosen arbitrarily.

4.5, Special Cases and Generalizations

We first apply the results of Theorem 4,2 to two special cases.

Case i: Let "™ =7 as in (4.58). Then u* in (4.66) assumes the form

- -1
u*(xt,t) = -RllBin(t).

(4.63) is satisfied and (4.65) simplifies to

t[
!
?
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. - R ’1 1 - -1 H '
-B(t) = P(A-B)R;}BJK) + (A-B;R; ;B/K)'P+Q,
"R’k - PR LB = 4.76
+KBR) R1,R;1BK - PB,R,B)P,  P(t.) F, (4.76)

-1,
» KRZZRIZBZK are

differentiable on [to,tf] and of constant rank, then all the R

if (BZ'KBZ)~1 exists and is differentiable on [to,tf] and B

F

220 Q> B>

P with R22>0, P> 0 which satisfy (4.64) and (4.76) are given by (see [43])
= ! 4.77)
Ry, = VIV,
P=M+Y (4.78)
= _b. _ -1, (A =l i,y (4.79)
Q, P- P(A-B,R |B{K) - (A-B/R|]B/K)'P
- -1 =1 -1, (4.80)
KBIRI lRllelBlK + PBZRZZBZP
= (4.81)
Fp = Qep)
where -1
B?ZKB2 = VAV ©, A = Jordan diagonal form (4.82)
TA=AF, T =r'>0 (4.83)
B'Yy = 0, Y=Y'=z 0. (4.84)

1f I and Y do not satisfy I' > 0, Y & 0 then one cannot conclude that

R22 > 0 and P 2 0 respectively. Y and R,, have to be chosen properly

12

differentiable so that P exists and is piecewise continuous. The

above construction does not guarantee Q22 0, FZZO.

Case ii: Let N* = T')1+T]2 where
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(-Ra(t)Bi(t)Ll(t), for t€ (to,tf].

-l .
N (e,8) = Ry (E)By(t )Ly (e ), for sgt ,
for s=zt, t€(t ,t.] and

for s>t°, t:=t:o

(s-t)Lz(t), for s<t, tG[to,t]

f
T‘.2(t,s) =

for s=>t
where Ll’LZ are real valued matrices. Then u* in (4.66) assumes the form

t
wh(x ,£) = R;](£)B] (E)L (£)x () +1L, () E x (s)ds (4.86)

o}

and (4.63), (4.64), (4.65) simplify to

t
'l ] . = '1.
-R;] (£)B] (D)L, (&) +L2(t)u£ 8 (s,t)ds = -R};(£)B) (£)K(E)

o}

R;(t)Bz'(t)P(t) = -R]-_;'(t)BZ'(t)K(t)
te

P(t) + [ {-A’(T)P(T)-Qz(T)-Ll'('r)Bl(-r)RH(-r)Bi(v)p(T) +
t

He =)L) (T)B] (NE(M-L] (1)B] (NR]] (DR, (NR]] (DB} (NK(T) +

-1 _
HE=T) Ly (TR, (MR (MB] (NK(MIE(T,£)dT = F, B (t4,t). (4.89)
The cases .1 and ii were special cases of the case considered in
the previous section. We will consider now cases where the leader uses the
previous strategy values as well. In the LF game considered in Sec-

tion 4.4, the value of the leader's strategy at time t was allowed to depend

on the previous trajectory X, = (x(®); £, <8 <t}. More generally one

may allow that the values u(t) of the admissible strategies of u of the leader

at time t depend not only on the previous values of x but also on those

of v. Assuming this dependence to be linear we have
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t t
a(e) = [dsnl(c,s)]x<s)+Jt“ [dT, (£,8)]v(s)
to ) o
or more generally
t t _ t
q(t) ={ [dsn1<t,s>1x<s)+{ [dsnz(t,s)1u<s>+{ [d.N,(t,8)]T(s)  (4.90)

[+} o o

qeLkaixed.4 (The Tll,T]Z,TI3 in (4.90) are as in (4.35), (4.36).) So, foragiven

choice ﬂl,ﬂz,'ﬂ3 by the leader, the follower is faced with the problem

t
£

minimize 3 [x' (e )F,x (t,) +u£ (" (£)Qyx (£)4T" (£)R,  T(E)HT(EIR,, T (£) )dt]
[o]

subject to k(t) = Ax(t) + Bju(t) +B,V(t), x(ty) =x, (4.91)

(4.90) and U,V piecewise continuous functions of time.
Theorem 4.1 can be now used to derive sufficeint conditions for problem (4.91).

A simple version of (4.90) is

t t
u(r) = [ 147 (e,9))x(s) + [ (4T, (t,5)]z(s) + L(E)V(E)
t t

o 0 (4.92)
where
2(£) = Ap(E)x(t) +K) (t)z(t) +B) (£)T(E) +B,(6)V(e), z(t )=z,
(4.93)

and the matrices L, Ki’ ;l are real valued piecewise continuous functions of
time and z(t)ERl, L arbitrary. For the linear system (4.43) with quadratic

costs (4.49), (4.45), we augment (4,93) to (4.43), set x=(x'z')"' and the

system is

“*Notice thac in (4.90), G(t) depends on its own previous values. If

u(t) were allowed to be any function of x(8),¥(9), t =@ st, then the
dependence of u(t) on it's previous values would notobuy the leader anything
additional. But if W(t) is restricted to depend on x(8), V(8), t S€.st in

a special form (like in (4.90), seealso (4.92) -(4.96)), then alloa'mg dependence
of u(t) on it's own previous values will benefit the leader.
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0 B B X

= A ~ 1| = 2 < ~ o
x(t) = |_ x(e)+ | _Tlule)+ ) V() x(t)=
L . L7t (4.94)

with costs Jl,Jz as in (4.44), (4.45) and with the strategy of the leader
restricted to be of the form

t ~ ~
u(x,,t) ={ [d N (t,8)1%(s) +L(£)T(E). (4.95)

o

The results of Section 4 are directly applicable to (4.94)-(4.95) and the
problem is to find ﬁ, Ki’ Ei, L, P so that (4.63)-(4.65) are satisfied where in
(4.63)-(4.65) one should use K,ﬁl,(§2+%1L) in place of 4,B;,B,. As far as

it concerns z,» it may be set arbitrarily equal to a constant or to a

functicn of X, preferably linear. The choice of z, might affect not only
the feasibility of (4.63)~-(4.65) but the follower's optimum cost value as

well. A simpler case of (4.95) is
T(t) = Lyx(t) + Lyz(t) + LV (t) (4.96)

in which case the solution of the LF game is easy since the
leader's controls are actually Kl’ Ké, El’ Eé, El’ EZ’ L, i.e. the leader
plays open loop. Nonetheless the leader's problem will be nonlinear since

his control multiplies the state (¥,z"".

4.6, A Nash Game with Memory

Consider the Nash game associated with (4.43)-(4.45) where at each

instant of time t, both players have access to all the previous values of

the state. The admissible strategies for both players are of the form




- ——

-

103

u(x,,t) =j£ (d.T; (t,8)]x(s) +b, (£) (4.97)
)
t
v(x,,t) ={ (4T, (£,8)]x(s) +by(t). (4.98)
)
ﬂl and ﬂz are as in (4.35)-(4.36), bi(t) are pilecewise continuous functions of

time with appropriate dimensions. By X s G, ;, we mean
u(E)mu(x ,t), v(E)=v(x,t) (4.99)

X, [to,t]—R", x,(9), ve€[to,t], ‘f:é[to,cfj

In the next Proposition we give sufficient conditions for a pair
of the form (4.97), (4.98) to constitute a Nash equilibrium pair. The first part
of the Proposition refers to a particular initial point X while the
second part gives conditions similar to the coupled Riccati differential
equations, see [1], which result in solutions in fredback form which are
solutions for any initial point X,

Proposition4.l: (i) Assume that there exist M, ﬂ; as in (4.35)—(4.36),bf,b%

piecewise continuous and ul, W [to.tf]‘Rn of bounded variation which

2.‘
satisfy:
t t

£ £,
NON| [A'(w)ui(ﬂ')+Qi(1')><('r)]d¢+{ M () (B, (Mg ()

R, (OE (DB (D (D147 = Fx(e), A5, LI=L2 (4100

t

by (8) +J; [a,TF (e, 8))x(s) = -R[; (£)B] (t)py (£),1=1,2 (4.101)
o

%(t) = A(t)x(t) - Bl(t)R;}Bi (t)ul(t)-Bz(t)R;;(t)Bz'(t)uz(t) (4.102)

x(to) =X,

i s B DaE 4 ma et s
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Then the strategies

t
W (g, 5t) = [ LAY (E,8)]x(s) +bE(E) (4.103)
tC)
t
v*(xt,t) = ; [dsﬂg(c,s)}x(s)-+b§(c) (4.104)
t
(o]

constitute an equilibrium pair for the Nash game associated with (4.43)-(4.45)
with admissible strategies (4.97), (4.98) and with x(to)==x°.
(ii) Assume that there exist ﬂf,ﬂ; as in (&4.35)-(4.36) and matrix functions

PI,PZ: [to,tf]-Rnx Rn of bounded variation which satisfy

_r'f , *! -1
Py(E)my (ATIDR (DA (M (7, 6)[B; (1P (DR, (DR, | ("B (DR (MDE(T,e)d =

t
= ¥(e.,t) 1,351,2, if] (4.105)
3% (t,ty) . ) |
at——_‘=[A(t)-Bl(t)R11(t)Bi(t)Pl(t)-Bz(t)R;Z(t)Bé(:)Pz(t)]Q(t’to) 1 (4.106)
@(to,t0)=1
t -1
Lordswif(:,s)) ¥(s,t)= R (£)B(E)P (£),i%1,2. (4.107)
Then the strategies
t 4.108
wk(x, ,t) 3{ [d T#(E, 8)]x(s) (4.108)
t
v*(x,,t) =[ (4,75 (t,8)]x(s) (4.109)

0

constitute an equilibrium pair for the Nash game associated with (4.43) -

(4.45) with admissible strategies (4.97), (4.98) and for any x_ eR".

” T
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Proof: (i) If the second player plays (4.98) then (4.100) with i=1, j=2 and

u(e) = -R;}(t)Bz; (t)u, () (4.110)

constitute sufficient conditions for optimality, by Theoremé4.l, of u for
the control problem faced by the first player. (In(4.100) the term Rz-:lez'“z

t

is substituted by -j‘ [ds'ﬂ*?_]x in these sufficient conditions.) Similar
to

reasoning applies for the control problem faced by the second player when

the first player plays (4.103).

(ii) We will first seek solutionsi. Mo of (4.100) which will work for any X,

1,

. Let
) by (E) = P (€)B (6 e )x (4.111)

where % as in (4.106). Using (4.109) in (4.100) and (4.101) we obtain (4.105) and
;;" (4.107) where we considered bi 0. It is clear now that if (4.105) and (4.107)
hold, the ""i's as in (4.107) satisfy (4.100)-(4.102). =

The case where the players use strategies of the form

t
u@t) = [ [ (5,8)]y  (t,8) +b, (t)
| o (4.112)
’ t
1 V(5,,t) = [ 14T, (£,8)]y, (E,8) +b, (t)

t
o

where for i=1,2:
y;(€,8) = G (t,8)x(s), t <s <k,

d
d—S-Ci(t,s)-O a.e. tof_sf_tf_tf,

ny
vy (E,8) €R
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; and ﬁi(t,s) =ﬂi(t,s)Ci(t,s) are as in (4.35)-(4.36) can also be considered.

; The strategies (4.112) correspond to the case where the i-th player's informa-
:} tion at time t is {Ci(t,s)x(s); togs <tl. We only mention that in this
case ﬂiCi should play the role of ﬂf in the conditions of Proposition 4.l

The results of Proposition 4.1 (see also problem (P')) can be used

S———pe———————y

to study the Nash game associated with (4.43) - (4.45) where the players use

previous values of their opponents strategy values. For example

t t
T(e) = [l N (e,9))x(s) + [ [d. N, (£,8)]%(s)
t S Ut S
(o} (o]
» - t £
. F(t) =tf [d. N, (£,))x(s) ] (4N, (E,8)]T(s).
'.'- [o] o)
151 Strategies of the form (4.92), (4.95), (4.96) can be considered for the Nash game

and the augmentation (4.93)-(4.94) may also be employed in this case. The

-

procedure for studying sufficiency conditions for Nash games with such

strategies should be obvious by now and we will not take it up here.




CHAPTER 5

ON SOME STOCHASTIC STATIC AND DYNAMIC NASH GAMES

5.1. Introduction

In this chapter we deal with stochastic Nash games. We start
in Section 5.2 by considering a static stochastic Nash game, where each
player has a quadratic cost and his information is a linear function of a
Gaussian random variable. Certain known results are considered first and
some new ones are provided concerning the existence and uniqueness of the
solution. 1In Section 5.3 we study solutions of the game of Section 5.2 which
are affine in the information and provide a method for finding them. 1In
Section 5.4 we generalize some of the results of the previous sections to
the case where each player's control vector is Eubdivided into smaller
control vectors, each one of which has to use different information. The
information available to the subvectors of each control vector is nested.
In Section 5.5 we consider a discrete time stochastic Nash game with linear

stochastic state equation and quadratic ccsts where the players have noise

corrupted state measurements. Special cases of this game were solved in

{17] and [63]. The case where both players have perfect state measurements,

i.e. Ci,k=I and Vi,k

was shown that if the noise Wi in the state equation is nondegenerate, then

the game admits a unique solution affine in the information under inver-

=0 V¥i,k (see (5.51) - (5.55)) was studied in [17] and it

tibility conditions for certain matrices. It was also shown in [17]
that 1if Wi is degenerate, then the game will have in general an
infinite number of nonlinear solutions. The case where at each stage k

the players share their previous state measurements and their information
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differ only in the k-th state measurement was studied in [63] where it was

shown that the game will admit a unique solution affine in the information

under invertibility conditions for certain matrices. In the more general

case where the assumptions of (17, [63] concerning the information of the

players do not hold the solutions of the game becomes extremely difficult.

In Section 5.5 we single out some new classes of problems which can be

relatively easily solved by using the results of the previous sections. In

the last Section 5.6 we translate some of the results of Section 5.5 to a

continuous time stochastic Nash game with a linear stochastic state equation

and quadratic costs where the players have noise corrupted state measurements. ;

Examples demonstrating certain properties of the solutions are also

given.

5.2. A Stochastic Static Nash Game

In this section we consider a static stochastic Nash game. After
a brief review of some results already available in the literature we
examine certain properties of this game and present some new results.

Let x be a Gaussian random variable over a probability space
Q,9,P), x : 0+R™ with mean % and covariance L, and Y10Y, two random

variables defined by

y; = Hix, i=1,2 (5.1)
where Hi is an ni><n real constant matrix. Consider the Nash game with two
players, 1 and 2, where player i chooses a Borel measurable function

n m
i i

u, :R "+R and his cost is

i
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= l-_ Y ' [ '
J;(uysuy) = 5[2 ui(yi)ui(yi)+ui(yi)QiX+ui(yi)RiuJ. (yj)+ui(yi)hi]
i#i, i,j=1,2. (5.2)

Qi’ Ri’ h1 are real constant matrices of appropriate dimensions. yi is

referred to as the information available to player i. We also want u;»u,

to be chosen so that ul(yl),uz(yz) have finite second moments. Thus our

problem is to find (uI,u;) which satisfies

* %) < * :
Jl(ul,uz) Jl(ul,uz), ¥ admissible vy

% %k % .
Jz(ul,uz) < Jz(ul,uz), ¥ admissible uy-

(5.3)

A straightforward application of Radner's theorem [51],[52] results in the

following theorem (Theorem 1 of [52]).

Theorem 5.1: (uI,u;) is a Nash equilibrium pair for the game defined above

if and only if

u (yy) = 'E[Q1x+ Ryu, (y,) +hyly;] (5.4)

uy(y,) = ~E[Qx+Ryu) (y)) +hyly,]. (5.5)

Substituting u, from (5.5) into (5.4) we obtain

2
u (yy) = -QElx[y;1-h  + R, + R,Q,E[Elx]y,]1]y,]
+ RiRE[E[u, (v)) |y,1]y, 1. (5.6)

Therefore the investigation of solutions of this Nash game is equivalent to

the investigation of solutions u, of (5.6). 1t can be easily shown that

1

since the operator P, = E[-lyi] is a projection operator in an appropriately

i
defined Banach space L ([52],[53)), it has norm <1, and thus the operator

P*RlRZE[E['[yZ]Iyl] has norm |[P||< HRIRZH. Thus 1if [Pl <HR RN <1, the

expansion (I-P)-1= I+-P+-P2+---- holds ([54], p. 231) and thus (5.6) has

a unique solution given by
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— 2 - -
u(y) = (T+P+P7+---)(-QP x+R QP Pyx-h) +R /b)) (5.7)

Since yl and Y, are given by (5.1) and x is Gaussian we conclude that the
converging infinite sum (5.7) is a sum of Gaussian random variables each
one of which is affine in Y1 and thus we conclude that ul(yl) will be of
the form

ul(yl) = Llyl + d1 (5.8)

" where L ,d, are some constant real matrices. If (5.8) holds then we see

1’71
from (5.5) that uz(yz) will be of the same form, i.e.

uz(yz) = L2y2 + d2' (5.9)

The above discussion is formalized in the following theorem of [52].

Theorem 5.2: 1If HRlRZH‘(l or HR2R1"<<I, then the Nash game has a unique

solution which is of the form (5.8),(5.9).
Theorem 5.2 guarantees existence and uniqueness of a Nash solution
and that the optimal strategies will be affine in the information. It is

crucial to notice that the condition HR1R£!<11 has nothing to do with the

Hl’HZ matrices which nonetheless constitute a quite substantial part of the

data of the problem. For example if H H2 are such that P =0, i.e. Pl’PZ

1’ 172

project into orthogonal subspaces of L then P=0 and the solution uy of (5.6)

is given by the first two terms of (5.6) and is of the form (5.8),

whatever R R, might be. More generally one can see that the solution of

172
(5.6) is unique if and only if the operator I—RlePle is invertible.
Theorem 5.3: Assume that Ple or PZPI is a projection. Then if det(I—Rle)#O,

the Nash game admits a unique solutiomn pair (uf,u?) with uz affine in y,.

e N




Proof: Let P.P_=P be a projection. Then if (I-R,R,P.P J¢ =0 = (I-RleP)so =0.

12 12712

Pp, =0. Thus ¢1+¢2=R Ry, @9, =0= (I—R1R2)¢l=0.

Let v =y, +v,, ;=¥ By 1R2¥17%

Since det(I-Rle) #0 = ¢, = 0. Thus v=0 and I-R1R2P1P2 is invertible. By

Theorems 1 and 2, p. 228 of ref. [54], we conclude that (I-RIRZPIPZ)_I is a
% *

linear continuous operator. Thus u] is affine in Y1 and consequently u] is

1 2

affine in Yor

Corollary 5.1: 1If H2= ClH1 (or H

PP, =P Py =Py, (PyPy =P Py =Pp).
Proof: Let 5‘1,32 be the minimal o-fields in 2 with respect to which Y15Y,

. = T oC o o= = 1l=.1=
are respectively measurable. If H,=C/H =&, C & E[(E[ |o«1] 15,1

E[E[-Igz][31]=E[-l‘J‘2] by Theorem 6.9, p. 260 of [55], i.e. P1P2=P2P1=P2

is a projection. n

= C2H ) for some matrix Cl (or CZ)’ then

1 2

and P2

Notice that if lIR1R2|I <1 (or ||R2Rl|| <1), the expansion (5.7) holds while it
does not have to hold under the assumptions of Theorem 5.3.

Let us now assume that for some nonzero vector e it holds

R1R2e= e and that Hl,HZ

are such that they provide a piece of common
information to both players. Let us also assume without loss of generality,
that X5 the first component of x is available to both players. Consider
any nonzero Borel measurable real valued function ¥(x). Then
Ple-‘{/(xl) = Pze-‘{/(xl) = e-‘l’(xl) and, e-‘i’(}&) = Rlee-‘{’(xl) and e-\V(xl)#O. Thus,
if (5.6) has a solution and det(I-Rle) =0 this solution will not be unique.
We thus conclude that the condition det(I-Rle) =0 is necessary for the
uniqueness of the solution of the Nash Game, if the two players share a
common nontrivial part of their information.

We conclude this section with an example which demonstrates that

the Nash game may have no solution at all or an infinite number of solutioms.

e d i
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Example 5.1: Let x= (X,,x,) , Y1s¥,su;,u, take values in Rz, %=0,

1°72
h1=h2=0
'ol 0
cov(x) = (5.10)
0 02
and -
[l 0] [l O]
y, = X, y, = X . (5.11)
L Lo o 2 {g 1l
Then (5.6) assumes the form
]
(I—RlRZ)ul = (—Q1+R1Q2) 0 (5.12)
Let [o 17 ri 1/2
R. = s R. =
1ol 1 2 13 o
[a v 1 2]
Q, = s Q, =
N 2 1 7]

where 1=28~5a. Then

[-2 0]
I-RR, =
12 7|

0
[l—a 7—YJ
_Q +RQ =
L7172 ag 11-8

and (5.12) results in

-

a-1 o
wk(x)) = 2 1 (5.13)
¢(x1)-

where w(xl) is any Borel measurable function of x, which results in ul(xl)

1
having finite covariance. (If we had 1# 23-5¢ then (5.12) would have no

solution.) From (5.5) we obtain




a+l i
+ 2 w(xl) + 2x

2 2

u;(x) = - (5.14)
L T X * 7%
and using (5.2), (5.13), and (5.14) we find
; o =t eni -2 k [o” (x))] (5.15)
%= - ﬁ#‘ﬂ ol-%— E wz(xl) + 20 (x)) 1. (5.16)

1

Notice that by choosing ¢n(x1)=ru< and letting n++> = Ji+-—w. Notice

1
also that the solution of the game is exactly the same even if in the cost

v

2

Actually by adding to the cost functional of player 1 the terms % euéuz,

% 6x'x, where 6>0 we see that Jl becomes a quadratic of the form

functional of player 1, terms of the form ulu,, u x, x'x were included.
272

[ I R Ql u
l | 1 1] T
> [ul,uz,x ] Rl 81 0 u,

Ql 0 01 X

which is positive semidefinite for a sufficiently large 6 (see [56]).

Addition of such terms to Jl will not alter the solution, but will alter

JI,J; and thus will eliminate the possibility J;‘--»--°° . Finally notice that

I-RlR2 is singular and H1= CZHZ and thus the possibility of nonunique

nonlinear strategies was expected by the discussion following Corollary 5.1.

5.3. Affine Solutions of the Stochastic Static Nash Game

In the previous section we stated conditions under which the

Nash game posed there will have a unique solution with the controls of the

players being affine in their information. The conditions det(I-Rle)# 0




Theorem S.A:v Assume that Hl,H

and H2==C1Hl demand some special attention. Let us assume that H2= C1Hl.

If it happens that det(I—RlR2)==0, then by perturbing very little the
arguments of Rl and RZ’ we can guarantee that for the perturbed pair
(ﬁl’ié)’ det(I-EiEz)#'O will hold. This is important because in a real life

problem the values of R are approximately known. Thus almost all

1°%2
such Nash games admit a unique solution which is affine in the information.
On the other hand if det(I-RlR2)= 0 but it is very close to zero, it might

happen that out of the possibly infinite solutions one can result in making

Jl or J2 arbitrarily small, (recall Example 5.1), i.e. if det(I—Rle):(J

the game might exhibit an unstable behavior. Therefore, in order to
guarantee uniqueness of an affine solution in a realistic framework, one

should impose a condition of the form fdet(I—R )f 2¢>0, where ¢ is some

R
12
positive comstant which depends on the measurement error of the entries of

R1 and RZ'

nonzero signaling is allowed between the players (see discussions in [57],

The condition H2= ClHl can be satisfied if a negligible but

[58], [59]) and this in conjunction with det(I~-R Rz)# 0 will guarantee

1
existence of a unique solution affine in the information.

Let us now restrict a priori our attention to admissible pairs
(ul,uz) of the form (5.8),(5.9). 1t is clear that if player 1 plays (5.8)
then player 2 will use a strategy of the form (5.9) and vice versa (see [51]).
In this case we have the following theorem.
2 have full rank ny and n, respectively, and
L>0, so that Hliﬂi, HZZHé are invertible. Then, a pair (ul,uz) of the form
(Llyl-fdl, L2y2+-d2) is a solution of the Nash game posed in Section 5.2,

if and only if the following matrix equations are satisfied.
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L, = -(Q1+-RlLZHZ)ZHi(HIZHi)-l (5.17) §
L, = -(Q2+-R2L1H1)ZH;(H22H£)—1 (5.18) ﬁ
d) = =(QQ +R LK) (T~ IH! (H ZH!) "'H )%~ (R d, +h)) (5.19)
d, = =(Qy+R,L H ) (I~ IH) (H,TH) T'H,)% - (Ryd, +hy). (5.20)

Proof: The proof is a matter of substitution of ui=1. -+di in (5.4),(5.5)

Y1

and identification of the appropriate matrices. ) =

Substitution of L2 from (5.18) in (5.17) results in

' 1. -1 ' v"l_ t 1 =1
Ll— R1R2L1H12H2(H22H2) HZZHl(HIZHl) = QlZHl(Hliﬂl)
' -1
+ RlQZZHZ(HZZH )

; szni(ulzui)'l. (5.21)

=L_H. we can write (5.21)

Since H, has full rank, by introducing Ml 19

1

equivalently as

' 1y\~1 v 1,1 - ' 1 -1
M R,R,M.ZH (HZZHZ) HZZHl(HlZHl) Hl = QlZHl(leHl) H

1 71727172 1
1] 1 _l ] 1 -l
+ RlQZZHz(HZZHz) HZZHI(HIZHl) Hl (5.22)
Notice that ul='Llyl+d1 = Mlxi-dl. Substitution of d2 from (5.20) in
(5.19) results in
= _ vy’ Rar SR :
. dl Rled1 = (Qli-RlLZHZ)(I ZHl(HlZHl) Hl)x hl i3
' ro=1 - ;
. + Rl(Q2+R2LlH1)(I-ZHZ(HZZHZ) Hz)x + thz‘ (5.23)
. _ -1
1 Notice that as soon as Ml is found from (5.22), we obtain Ll-Ml(HlHl) .
' L2 is determined from (5.18) and with Ll,L2 given, the solution of (5.23)
! for dl determines d2 from (5.20). Consequently the study of solutions ;

affine in the information is reduced to the study of solutions of (5.22) ana

(5.23). Obviously, if det(I-Rle)# 0 (5.23) results in a unique solution |

for dl in terms of Ml. Therefore we will focus on (5.22).

:
{
4
i
i
;
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Lemma 5.1: If for any pair (A,u) of eigenvalues of RlR2 and :

' 1. =1 ] r"l . .
ZHZ(HZZHZ) HZZHl(HlZHl) Hl respectively, 1# Au, then (5.22) has a unique
solution in Ml'

Proof: The proof is an application of Theorem 1 of [60]. s

Notice that interchange of the indices 1 and 2 in the hypothesis of Lemma 5.1
does not result in any benefit since for any matrices A,B, which commute i

AB and BA have the same eigenvalues.

Proposition 5.1: If det(I-RjR,)#0 and'al= C,H, or Hy=C/H , then (5.17)-
(5.20) has a unique solution in Ll’Lz’dl’dZ'

Proof: If Hy=C,H, the product ZHé(Hzmé)'lﬁzmi(ﬂlmi)"lHl=

= ZHé(HZZHé)-lHZZHéCé(HlZHi)—lHl = zuz'cé(ﬁlmi)'lﬁl - ZHi(HlZHi)-lHl,

i.e. it is a projection and thus it has eigenvalues 0 or 1. Since

det(I—Rle) # 0 we conclude that all eigenvalues of R1R2 are different than 1

and thus the hypothesis of Lemma 5.1 holds. Thus Ll'LZ

uniquely. Since det(I~R1R2)# 0 (5.23) can be solved uniquely for dl. .

can be found

Clearly the conclusion of Proposition 5.1 was expected in view of
Theorem 5.3 and Corollarv 5.1. The above results provide conditions for exis-
tence of a unique solution affine in the information. If these conditions do
not hold, we might have no affine solutions at all or an infinite number of
affire solutions. Notice that in our results the matrices Hl,Hz play a
certain role while in Theorem 5.2 they do not.

From equation (5.22) it is obvious that the study of solutions
affine in the information is intimately related with the study of the matrix
equation

Y - AYB = D. (5.24)

| I,,,.,,.,_,,_._.____—M - | -~




w
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In the sequel we will deal in more detail with this equation. Let

Aa= diag(Al,...,Ap), Ab=d1ag(B1,...,Bq) be the Jordan forms of A and B

respectively, with A=TAaT_1, B=RA R—l. We set X=T-1

b YR, C= T71DR and thus

(5.24) is equivalent to
X-AaXA.b = C. (5.25)
We partition X and C in the form X= (Xij)’ C= (Cij)’ i=1,...,p, §=1,...,q,
so that (5.25) is equivalent to the system (5.26) of the p-q independent
matrix equatiomns,
Xij-AiXiij = Cij’ i=1,...,p, j=1,...,q. (5.26)
We have

A, =AI+H, B,=ul+E,
i i S T | 3

where Hi’Ej are of the form

0 1 0 ...... 0]
0 0 1 0 0
0 vevervnnnnnns 0 1
0 ceeean 0]
m, n,
with dimensions m,xm,, n,xn, respectively. It holds H.1=0, E.J = 0.
i i 3 3 i j
L
Case 1: 1= )\iuj. (5.26) can be written (we drop the indices for convenience)
X = rlﬁ [C+ AXE + uHX + HXE] . (5.27)

Multiplying (5.27) by H,E we obtain

XE = i-lT [CE + AXE + LHXE + HXEZ ) (5.28)
1 2. 2
HX = m [HC+ AHXE + pH X+ H XE] (5.29)

HXE = —-1-; [HCE + )\HXE2+ uHZXE+H2XE2]" (5.30)

——

o L VU




Case 2: 1= Aiuj. In this case Ai is nonsingular and (5.26) can be written as
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We substitute HXE from (5.30) into (5.28) and (5.29) and then substitute

XE, HX, HXE from (5.28)-(5.30) into (5.27). We obtain

= 2 2 2
X = alC + mZCE + a3HC + a4HCE + aSXE + a6HXE + u7H X ;
+ :xSH?'XE + a9H2XE2 : (5.31) ‘f
i
where al,...,ag are functions of Xi and uj. The importance of (5.31) is

2
that in the terms in the right hand side X is multiplied bv E2 or H™.

Repeating the procedure but starting with (5.31) instead of (5.27), after ¢
steps we obtain an expression of X in terms of HkCEZ and HUXET, c,TZ0.

If piamin(mi’nj) then the terms HUXET are zero and thus after e steps we
have obtained the unique solution of (5.26). The existence of a unique
solution could be foreseen by Theorem 1 of [60], since 1# kiu,.

J

Aflx..-x..B. =alc .. (5.32)
i 713 ij ] i 7ij

(5.32) has a solution if and only if the matrices

/A.l a’tc, Al 0

{71 i 7ij i )
’

\o B, \o B,

j . i/

are similar, [61]. If similarity holds then (5.32) has at least one

solution. Since the homogeneous equation

Xij--AiXijBj =0 (5.33)

has 1= Aiu , 1t will have an infinite number of solutions and so will (5.32).

3

Methods for solution of (5.32) are known and we will not take up this issue

here.
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5.4. Generalizations

In this section we will prove generalizations of Theorems 5.2 and
5.3. Consider the Nash game where player 1 chooses (ul,...,uN), player 2

chooses (v .,vN), their respective costs are

1
N N N 1 N o ] (5.34)
J, = E-— Z wlus+ I ulQ.x+ u, R v += T u,l, . u, .3
1 x[ =111 45 % 1,7=1%%45"3 2 4,5=1 11373
i#]
1 N ' N P N — 1 N —_ ;
J, = E[+ Tt wv,v.,+ I v.Qx+ I Vv.R,.u += I v! v] (5.35) \
27 x24o1id g2 it g 511 ii 3 2 4,5=1 14 13 i
tr :
. where x is a Gaussian random variable and X,u,,V, takes values in finite 3
) dimensional Euclidean spaces. uy is to be chosen as a Borel measurable
;' function of
JSZ , = cee = + . .
% Zy = Aypse-esygls oy = Hox jEiLijuJ(Zj) (5.36)

4 and vi is to be chosen as a Borel measurable function of

= {F.y00esy = f + L,.v.(Z.). .

In addition, U,y must have finite second moments. Notice that since the

information structure of each player is nested, see [62], we can actually

disregard the I L, ,u,, I L,,v, terms in (5.36),(5.37 The matrices
g 55y 14 13 ( ), ).
1

T, =T

Qi’Qi’Rj » Fij=rji’ ij ji’ H H

, L..,L,., are real, constant, of
i ij

1]
appropriate dimensions.

Theorem 5.5: A pair ((u*,..., *),(v*,...,v*)) constitutes a solution of the
——— 1 UN 1 N

Nash game associated with (5.34)-(5.37) if

*8-
uf = -E[Qx + § Rijvj-fjiirijujlzi] (5.38)

v: = -E[Q x + I R,

j i3 Uyt j#i iJ j| I (5.39)

Proof: The proof is in spirit the same to the one of Theorem 1 in [52].
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If we set E['[Z.] =P _, E['[z ] = P, and take into account that E[u,|Z. )=u,,
i i i i i'7] i

E[viﬁj]=vi, if i<j, we conclude that (5.38) and (5.39) can be written as

t .. < rul T
I TP Tisfp e TRy l Ri1Pp RyoPy Rinf1 uy
i ™ u
Tan I Tyf, Taf2 | Raafa Rpofp oo Rav® 2
.| . I .
- . ' .
Ty1 "n2 Ty, N- I v RyPy e Run’n Uy
e T -
. ST T - 3
. RllPl ............... RlNPl p I FlZPl ----- lNPl ]
yT T P T P
; coTar b Tagfae T
. |
; - - - - | - -
o %IlPN Creceveienenn RNNPN | FNl \2 I 1 vy |
.4 é; - -
’ QP
P,
a - | Ufyx | x (5.40)
QP
| APy |
or in
(I-L)u = Tx. (5.41)

Since all the projections Pi’ﬁi have norm <1, one can readily conclude that

if the matrices T are chosen sufficiently small, then the

137T13 Re57Ry;
operator 1 has norm <1 and thus (I—}..)-l= I+i+i.2+ *** . Thus u can be

expressed as a convergent infinite sum of Gaussian random variables affine

in x and thus u is affine in x. We thus have proved the following theorem.




Theorem 5.6: If the norms of T T ’Rij’ﬁij are sufficiently small, then

1713

the solution of the Nash game (5.34)-(5.37) exists, is unique, and each
ui,vi is affine in its information.

In the last part of this section we will show how Theorem 5.3 and
Corollary 5.1 can be generalized for the problem (5.34)-(5.37). In order
to illustrate the procedure, let us assume that N=2. Let P1=E[- |Zl],
P2=E[-|ZZ], P =E[-|Z 1, f’2=E['|Z ]J. Let us also assume that for some

matrices Cl C2 it holds Hl—ClHl, I-IZ-CZH1 (recall assumptions of Corollary

5.1). Also let Lij =0, Lij =0 without loss of generality. Then

PlPl = PlP1 = Pl’ P]_P2 = PZPl = P2, P2P2 = PZPZ = P2 (see Theorem 6.5.10, p. 260

in [55]). (5.38) and (5.39) assume the forms

b T R L P A Bl RS A Rl LAY (5.42)

u, = -Q,P,x- I‘Zlul - Ry Pyvy - R22P2v2 (5.43)
e s om == (5.44)

V] T QB X TyaPy vy T Ry Pyuy RGP,

v, = =Q,P,x~- F21v1 - R21P2u1- R22P2u2. (5.45)

Since Plul = ul, quz =u

P21.11=P2P1ul Plul=ul, 24y 2P2u2=P2u2=u2, and since Ple Pl’ (5.44) and

(5.45) become

1= BPyy =Py =uy, Puy =P Pou,,
: oo

o (LF 15 47 g
vy = (1T, H- =0 T )Q,)Fyx + (I-T T, )77 ( R11”121‘21)“1
+ (1T T ' Ry, *+TpHRy0)Y, (5.46)

- = - - - = = -1, = = = .=

Uy = —QuPyx - Ryjuy = Ryyuy = Tog (I-TyoTpg) T(=Q =T Q) Pyx
= = -1, = - =
g1 {I-T1oT1) "Ry + TRy
-1

Ty (ITalay) TR+ T Ry 00u, (5.47)
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12f21 1’V2
(5.47) into (5.42),(5.43) we obtain a system of the foim

where we assume that det(I-T )#0. Substituting v from (5.46),

=
[}

1 AlPlx + A2P1u2 + A3u1 (5.48)

u B.P.x + B,u, + B u (5.49)

2 172 272 371
where Ai’Bi are matrices calculated after the substitution. If det(I-Bz)# 0,

we can solve (5.49) for Uy, substitute in (5.48) and obtain

u = APlx + BPlul (5.50)

where A,B are again matrices calculated after the substitution. If

det(I-B) # 0, then the operator I-BP, is invertible and (5.50) has a unique

1

solution in urs linear in - Therefore Uy, vy can be found uniquely by

’V2

in (5.49) and u,,u, in (5.46),(5.47). We have thus shown

substituting ul 1749

that if certain matrices are invertible, then the game will have a unique

solution, linear in the information under the crucial hypothesis that 22 is

a linear transformation of Zl. The generalization of this procedure to the

case ‘here N22 is obvious. We can thus state the following theorem.

Theorem 5.7: If ZV is a linear transformation of 21, or Z., is a linear
4 L

N

transformation of Zl’ then if certain matrices are invertible, the game

(5.34)-(5.37) has a unique solution linear in the information.

5.5. A Discrete~Time Stochastic Linear Quadratic Nash Game

In this section we consider a linear quadratic discrete time,
stochastic, Nash game, where the players have noise corrupted measurements
of the state. The aim of this section 1is to point out several difficulties
and provide solutions or conditions for existence of solutions for some

special cases.

s S S F

S ——
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Consider the dynamic system whose state Xy evolves in accordance

with the equation

Ml T A T Bk P Bk T e KO LN 55D

where u are chosen by two players who play Nash and whose respective

1,k’ Y2,k

costs are Jl,JZ,

N
= ' ) ' 1
Ip = Bl Qe 2 B, k%t Ut V2R e 0 55D
N
2 = Bl Qv T L 82,13 Y 2,k T LRk 0 003

t L
= = = =0. . i -
where Ql,k Qi,k o, Ri,k Ri,k 0 ul’k is to be chosen as a Borel measur

able function of Zi, where

N
(]

" {yi,O’yi,l""’yi,k} (5.54)

Vi ™ G T Ve 0 1T L2 (5.55)
m

n 1 o

xk’ul,k’uz,k take values in R, R 7, R 2 respectively, Vies vi,k’ and x. are

0
independent Gaussian random vectors, the expectations in (5.43),(5.44) are
with respect to all random variables and all the matrices have appropriate
dimensions.

Some special cases of this game have been treated
successfully, [17], [63], but in its general form, is quite
difficult to solve. Only one class of admissible Nash strategies can be

relatively easily investigated and this is the class of strategies affine

in the information. 1If player 1 uses an affine function of his information

- - 1 .
“ at each stage k, i.e. ul,k Ml,kzk+-d1,k then player 2 is faced with a
classical LQG problem which he can easily solve and his optimal reaction

. 2
2,k M k%t 2k

deterioration to his cost J2. The converse also holds. Thus we end up with

can be restricted to be of the form u without any




i

f} .
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a system of matrix equations with unknowns M d, 1 i=1,2, k=0,...,N.
!

k,
This system might have one, many, or no solution at all. The following
example demonstrates that there might exist no solution in the affine class

of strategies.

Example 5.2: Consider the one stage game

X = Ax + Blul + B2u2

Jl = E[xin i-uiuli-quluz]

J2 = E[lezx +-u2u -t-ulR2 l]
where Xy = (xl,xz)' has zero mean and covariance equal to the unit matrix,
and x,ul,u2 take values in R2. ul and u2 have to be chosen as functions of

yl==C1x0 and ¥y = sz0 respectively. Sub;tltutlng x, with its equal in

1

J ,J2 we obtain a static problem with

1
I+B.Q,B
x ' 1°171
Jl = E[u1 — u1 lQle +ul BlQl 9 2] (5.56)
N 1+32Q2 )
- ?
J, = Bluy —5 == o, + 2Q Ax, 4-u 2Q2 u 1. (5.57)
The solution (ul,uz) is given by
, - -1+
u; = -(I+B;Q;B,) lQlAE[x |yl (I+B1Ql R BlQleE[uzlyl] (5.58)
2 - _1 1 "l *
u, (I+32Q2 2) BZQZAE[xOIyZ (1+32Q2 2) BZQZBlE[ul[yZ]. (5.59)
Substitution of u, from (5.59) into (5.58) we obtain
= -(1+B!Q,B.) 1B'q AE[ |
u 198 B AEIxyly, ]
-1_ =1
+ (1+B1Q;B)) "B1Q;B, (I+B)Q,B,) "B,QAE[E(xy |y, 1]y, ]
-1+ -1
+ (1+31Q1 1) B;QB,(1+B;Q,B,) BZQZBIE[E[ul|y2]|y1]. (5.60)

Let us now choose
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Then (5.60) assumes the form

sa
{0 o} . [ 5 xl}
o 1J !t 0

which is impossible to solve for u, if 8 # a.

1
Since the information of each player is affected by the control

laws of the other, one would be tempted to consider a subclass of problems

where this is not the case. Let us assume that

Ci,lBj,O = 0 ) ‘.
Ci,z[Bj,l:AlBj,Ol =0

Ci,30By, 21898y 11898185 41 =0

Ci,k[Bj,k—l:Ak-lBj,k—Z:"':Ak-lAk-Z"'AlBj,Ol =0 (5.61)

CronBy N-1iho1By gt Ty 4By o] = 0

Equation (5.61) means that the controllability subspace of player j is ]

orthogonal to the observability subspace of the Ci matrices of player i.

yk

If (5.61) holds, then substitution of Xl in terms of XyoUy oo ety g0
14 *

Uy goevraly gs for k=0,...,N (by using recursively (5.51)), in the cost

functionals Jl,J2 will result in a Nash game of the type (5.34)-(5.37).
The Lij matrices in (5.30) are given by products and sums of the C1 D’
AP,B1 p (0Sp<j) matrices and the Hi matrices by products of the




C sA , 0Sp<j matrices. Similarly for the L,.,H, matrices. Of course
L,p'p ) ijh i

the v, w
ik’

X noises can be incorporated together with X, in a random vector
which will play the role of x in (5.34)-(5.37). Therefore Theorem 5.6 can
be used to derive conditions which guarantee existence and uniqueness of a
Nash pair, affine in the information for the game (5.51)-(5.55) under the
hypothesis that (5.61) holds. Nonetheless, since for the Example 5.2
the condition (5.61) holds trivially, we conclude that (5.61l) alone does not
in general suffice to guarantee existence of a Nash equilibrium pair.
Although (5.61) is a quite restrictive assumption (since for

example if C =1, k=0,...,N then player's 2 controllability subspace is

1,k
zero!) it did not really make our problem much easier. An inspection of the
static problem of Section 5.2 shows that if Rl or R2 (see (5.2)) is zero
then the static game (5.1)-(5.2) does have a unique solution which is affine
in the information. Similarly for the game (5.34)-(5.37) if the Rij's or

the Rij's are zero. The translation of these conditions to problem (5.51)-

(5.55), assuming that (5.61) holds is that

. . . . At . .
(B kiAo A Mem1Be k-2 e 8By 0d Qi By kAR 1l

‘A AL 10, 4=, 372, k=0,1,....N (5.62)

holds. Then the problem of player 1 is totally independent éf u2,k’ i.e.
it is like setting Rij==0 in (5.38). The meaning of (5.62) is that the
observable, through Ql,k’ parts of the controllable subspaces of players 1
and 2 are orthogonal in a "'stagewise' sense. If (5.61) and (5.62) hold then
player 1 is eventually faced with solving a system of equations like (5.38)
but with Ri =0. This system can be solved uniquely and give a control for

]

player Uy linear in the information under invertibility conditions of certain
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matrices. (The reason that makes these invertibility assumptions necessary
. . iy s 2 . L
is that the matrices Ak,l arising in the cross terms ullAkRulk’
0<k#2<N might make the control problem nonconvex in the (u, .,u. _,...,u. ..)
1,0°1,1 i,N

variable.) Consequently player 2's problem can now be solved, since it
becomes a classical LQG problem. For solving player 2's LQG problem no new
invertibility assumptions need to be made. Of course if one reverses the
roles of i=1, j=2 in (5.62), similar conclusions hold with the roles of
players 1 and 2 reversed.

Other cases where the game (5.51)-(5.55) can be solved and give
solutions linear in the information can he found by imposing condition (5.61)
and additional conditions which guarantee that the assumptions of Theorems

5.6 and 5.7 hold. We will not carry out these procedures here because of

the complicated character of the conditions involved.

5.6. Continuous Time Analogues

In this section we will deal with some continuous time analogues
of some cases considered for the discrete dynamic stochastic Nash game.

Consider the system

dx(t) = [A(t)x(t) +Bl(t)u1(t) +B2(t)u2(t)]dt + G(t)dw(t) (5.63)
and the cost functionals
t
f

Jl = E[{ [x'(t)Ql(t)x(t)+ui(t)u1(t)+ué(t)R1(t)u2(t)]dt] (5.64)

“f
J, = E[{ [X'(t)Qz(t)x(t)+ué(t)u2(t)+ui(t)R2(t)ul(t)]dt], (5.65)
‘o

. A
u; is chosen by player i as a measurable function of Yie© {yi(s); toséssito},

where
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dyi(t) = Ci(t)x(t)dt + Ridvi’ i=1,2 (5.66)

and u;,u, are such that the solution of (5.63) exists and is unique over
(to tf]. x(to)= X is a Gaussian random vector with given mean and covariance

and dw,dv dv, are

1’772

independent. The initial conditions for ¥,»¥, are zero. x(t),ui(t),yi(t)
m, dq,

take values in Rn,R l,R * respectively and the matrices A’Bi’ci’ Qi=<Qi>’0,

l,dvz are standard Wiener processes. xo,dw,dv

Ri=R;>O, G, Ri=R;, (RiRi> 0) are piecewise continuous functions of time
with appropriate dimensions.
The case in the discrete problem of Section 5.5 where each player

uses an affine function of his information, corresponds here to the case

where each player uses
t
u(e) = [ ldgn (6,9 ]y, (s) + b, (0) (5.67)

o]

where dsniQ,s) are deterministic Lebesque-Stieltjes measures and bi(t)

deterministic functions. If player 1 plays u, as in (5.67), then under

1
appropriate conditions for player 2's problem a separation principle holds
and he will use u, of the form (5.67), see [64]. Notice that (5.67) is a
compact form of writing the solution of an infinite dimensional filtering
problem. The need of infinite dimensional filtering for linear quadratic
continuous Nash games was first pointed out in [65]. The study of possible
nonlinear solutions to the game of this section is far more difficult than
in the discrete time case.
Let us try now to translate condition (5.61) to the continuous

time problem. Let ¢(t,to) be the transition matrix which corresponds to

A(L).

- . Py min gD

|
|

vy




Lemma 5.2: If

i
o

Cl(t)Cb(t,‘r)BZ(r) to<r<t<t i#j, (5.68)

f

for (i,j) = (1,2) then the information of player 1 is independent of

the control law of player 2. i

Proof: From (5.63) and (5.66) using (5.68) we obtain

t t s
y (t) = { Cl(s)Q(s,to)xodS+-f [f Cl(s)é(s,t)Bl(T)ul(yl,T,T)dr]ds

t t
o o
t s t
+ [ (f Cl(s)Q(s,T)dw(T)]ds+-f R, (s)dv, (s) (5.69)
t t tl
o © o
and the conclusion follows. .

Obviously (5.68) is the analogue of (5.61) for i=1,j=2.

k. Let us now find ‘the analogue of (5.62). The way we derived (5.62)

!

was by imposing the condition that there are no cross terms U kﬁuz 0
b b
0<k, ?<N (A: some matrix) in Ji- Therefore here we demand that
t , t
(f o(t,m)B (u, (1)d1) 'Q (£) (f &(t,1)B, ()u,(1)d1) = 0 (5.70)
t 1 1 1 t 2 2
o o

for every t and every ugsly. (5.70) can be written equivalently

tt
{ { u (1B (D)8 (£,1)Q; (£)0(t,0)B,(0)u, (o) dtdo = 0
o0

and thus we conclude that (5.70) is equivalent to

Bi(r)(b'(t,r)Ql(t)Q(t,o)Bz(c) = 0, t°<c,r<t tE[to,tf] (5.71)

(5.71) is clearly the continuous time analogue of (5.62). We can now state
the following thecrem.

Theorem 5.8: Assume that (5.68) holds with (i,3j)=(1,2) and (i,3) = (2,1)

and that (5.71) holds. Then for the Nash game (5.63)-(5.66) player 1 can
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find his control by selving a control problem with state yl(t) obeying

(5.69) and a quadratic cost depending only on u, and yl.

1
Clearly the quadratic cost mentioned in Theorem 5.8 will be of

a more general form than the familiar one, and the control problem of player 1

will be of the category considered in [64]. The results of [64] can be

used for solving the control problem of player 1 under the assumptions of

Theorem 5.8. The invertibility type conditions for solvability of this

problem in the discrete time case (see discussion after (62)) have to be

made here too. As soon as this control problem is solved player 2 will

be faced with a linear quadratic problem of the form treated in [64]. Thus

we conclude that the assumptions of Theorem 5.8 in conjunction with the

results of [64], can lead with relative ease to the solution of the problem.
We will close this section with a particularly simple case for

which the Nash game can be solved without using the results of [64] on the

infinite dimensional stochastic regulator problem. Let us assume that

C (e)e(e,t B, (¢) = 0
Cl(t)°<t'to)32<t) 0 ce[to,tf] (5.72)

]
c(£) = ¢ (8)Q; (8), Q (&) = I.

Y,
Let us also assume that Ql (t) is continuously differentiable and invertible

on [to,tf]. Let

)
z(t) = Q (©)x(e). (5.73)
From (5.63) and (5.72),(5.73) we obtain
2 t v t oy
2(t) = Q) (D)o(t,e )x +/ Q (D)o(e, 0B (Du (dr+[ Q ()e(e, 16 ()dr.
% %o (5.74)

From (5.66) and (5.72) we obtain

‘ . - A o , . IﬂllllllllIlﬁﬂlIlllii'
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dyl(c) = Cl(t)x(t)dt + Rl(t)dvl(t) = Cl(t)sz(t)x(t)dt + Rl(t)dvl(t)

Cl(t)z(t)dt + Rl(t)dvl(t)- (5.75)

Let

- 12 d 17,3 n
A(t) [Ql(t)A(t)+5; Ql(t)]Ql (). (5.76)

Then player 1l's problem can be written

dz(t) = (A(t)z(t) + B, (€)u (£)1de + G(t)dw(e),

z(to) X

° (5.77)

dyl(c) = Cl(t)z(t)dt + Rl(t)dvl(t)
te

minf (2" (©)z(t) +u] (B)u, (£))dt
t
[

where we omitted the term ué(t)Rl(t)uz(t) since the first two of the

assumptions (5.72) guarantee that yz(t) is independent of u (see Lemma 5.2).

1°
(5.77) is a classical stochastic linear regulétor problem. Player 1 has to
use E[z(t)|yl’t]= ;(t) and his control law is linear. Player 2 will be
faced with a classical linear quadratic control problem with state
(x(t),z(t)) and he will have to calculate E[x(t)lyz’t] and E[z(t)lyz’t]

= QUZ(t)E[E[x(t)Iyl’t]]yz’t]; i.e. player 2 will use a two step filtering
procedure. We thus see that conditions (5.72) single out a class of problem
with nonnested Y1 and Yo which admits a unique solution linear in the

estimates E[x(t)lyl’t], E[x(t)[yz’t], E[E[x(t)(yl t]lyz,t] and there is no

need for infinite dimensional filtering.
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CHAPTER 6

CONCLUSIONS

The work presented in this thesis answers certain questions in the
area of Leader-Follower and Nash differential games. The main topics include
existence of closed-loop Nash strategies, necessary conditions for closed-
loop Leader-Follower strategies, sufficient conditions for Leader-Follower and
Nash strategies with memory and stochastic Nash games with state information.
In Chapter 2 we gave conditions which guarantee the existence of linear
closed loop Nash strategies. We also established, in this chapter, the
uniqueness of analytic closed loop Nash strategies for analytic differential
games. In Chapter 3 we gave necessary conditions for closed-~loop Leader-
Follower strategies. It was shown that the leader's problem is a singular
control problem, which explains the peculiar behavior of certain previously
studied examples. It was also established that the leader can in general
restrict himself to strategies affine in the state and that there are other
types of strategies to which the leader can restrict himself without
deteriorating his cost. These different types of strategies although
guaranteeing the same optimal costs and trajectories, might result in different
sensitivity or stability properties. It was also shown in this chapter that
the Principle of Optimality holds for Leader-Follower differential games, if
and only if it is in the players' common interest to consider the leader's
problem as a team problem. In Chapter 4 we dealt with sufficient conditions
for Leader-Follower and Nash differential games where the players have recall

of previous values of the trajectory. In particular for the Leader-Follower

game we considered the case where the Leader's problem is treated as a team
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problem by both players. The conditions of this chapter were given in the

form of integral equations. In Chapter 5 we considered stochastic Nash

games. Results concerning the uniqueness of linear strategies were derived E
for the static case and translated to the dynamic one. For the dynamic case

it was shown that if the control of one player does not affect the information

of the other and if at least one player's cost is not affected by the other

through the penalization of the state, then under invertibility conditions for

certain matrices, the linear solution is the unique one.

There is a plethora of problems to be studied in the area of
differential games with state information, besides those studied in this
thesis. We will single out some of them arising naturally from the study
presented here. Chaptef 2 suggests the following areas of research:

1) Uniqueness (or nonuniqueness) of closed loop Nash strategies. 2) Geometric
conditions for solvability of the coupled Riccati equations. 3) Efficient
algorithms for solving the coupled Riccati equations. Chapter 3 suggests the
following areas of research: 1) Generalize the analysis in Chapter 3 to
nonstandard control problems where X, = {x(g)|0< o<t} plays the role of x(t).
2) Generalize the analysis in Chapter 3 to L-F games where the leader uses
u(xt,t). 3) Efficient algorithms for solving the L-F game of Chapter 3.
Chapter 4 suggests the following areas of research: 1) Existence and unique-
ness of the solutions presented in Chapter 4. 2) Single out simple classes of
L-F and Nash games with memory and provide computational procedures. Chapter 5

suggests the following areas of research: 1) In view of the possible nonlinear 3

solutions to the games of this chapter, provide simple sufficient conditions to

check optimality of nonlinear solutions. 2) Geometric interpretations of the
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matrix~type conditions of this chapter. Of course in all chapters, questions

TP AT RTINS WS MATIE WA - sbegiglrinsf L~

of sensitivity and stability character of the solutions arise especially when

the solutions of the games are not unique.

ay.-
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APPENDIX A

PROOF OF PROPOSITION A.l

In [4], Proposition 1 states that given (2.1),(2.2) where
Rll,R22 > 0, then if Kl’ K2 satisfying (2.4) exist and A (as in (2.5)) is
A.S., then the strategies (2.7) satisfy (2.3). This is not true as the
counterexample x=x+u+ v, =J. = .I1 = f:m(xz*'uz-sz)dt demonstrates.

2
[This example is used in [9] to show that in the zero sum case the linear
solution for the game over a finite period of time [0,T] does not, as
T - +o, tend to the linear solution of the infinite time case.] But if one
makes additional assumptions then the conclusion holds.

The correct form of Proposition 1 in [4] is

Proposition A.l: Given the system (2.1) and the two functionals (2.2) where

Qi’ Rij are real symmetric matrices and R > 0, if there exist real

11°Ro2

symmetric matrices Kl’ K, satisfying (2.4) and (2.5) and either (i) or (ii)

2
hold:
(i) KRR, R, = 0, i,j=1,2, i # j
QG * 373374373373 ’ 1 1

(ii) The two control problems

= (A- B.R.'B'K.)x + B.u,
37337373 ii

+ . . C s o2
min f (x' [Q1 KJRJJRIJRJJKJ]X ulRllul)dt, i#3, i,j=1,2

satisfy the conditions of Theorem 2, p. 167 in [14], then the strategies

% %*
2. satisfy . an JA, J., are finite.
(2.7) satisfy (2.3) and J;, J,
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APPENDIX B

*
NONFINITE J; 'S

*
The case where at least onme of J,, 32 is tw could alsoc be

examined. For example, if we are interested in a linear Nash equilibrium

% *
where Jl = tw and J2 is finite, then this amounts to seeking u; = -Lix,

i = 1,2 where (i), (ii), (iii) hold:

(i) The control problem

x = B, L)x +

x (A- 1 1)x Bzu2
+eo

T - '+*| *+
J, = min [ (x'(Q+ Ly Ry L)x + uR ,u)de

- *
has J, (= 32) finite. (For example assume controllability and

+ L*'R L* 0
Q * L Rylyz 0.

(ii) The problem

. *
x = (A- Bsz)x + Blul

w3 . %
L = J QLR L)k + u iR uy )dE

L has J, = +o for every u; = -le (which means roughly that some uncontrollable

1

mode A of the pair (A - 32 2,B ) which does not lie in the null space of

Q * L2R12 2 has Re [A] 2 0).

b (iii)
* _ -1,
Ly = RyB
i
-1
Y + + + - .
K, (A~ BlL1 (A-B/L ) K, + (Q, Ll R21Ll) KZBZRZZBZ , =0
* #
Similarly one can form conditions for the cases J. = J2 = to, J; = -» and
*
J, finite.

1
2




APPENDIX C

PROOF OF 2.32

Consider the matrix differential equation

K. = ' - - - c.1

Ky = KA+ AR + @ - KiS;K - KSRy = KS,K + K§ K, (c.1)

y - + 1 + - - - + C.2

K, K2A A K2 Q, 1<2521<2 K,S,K; Klle2 1<1s°21<1 (c.2)
where Kl’ K2 are time varying, t =2 0 and KI(O) = Fl, KZ(O) = Fz are the

initial conditions. Then it follows that for t= O sufficiently small it holds

t 1
- At A't Ag LLAlo
K (E) =e "Tle + j‘oe [Q - K S;K; - K S K, = KyS K+ Ko851K,]e” “do

(and a similar one for K2(t)). The constant matrices rl_- 1”2 solve (2.67),

(2.68) if and only if

- At ATt
Fl e rle + e

Alc
Jof QT STy =T 80y ~TpS,Ty FTpS, Mple™ "o

(and a similar one for Fz). Because A is A.S. and rl, rz constant, the integral

+xo
- Ac - _ A'c
L= [ Q=TS Ty =T 8,1, =T8I #T,8, Fple "dx

exists. Also

t
A Ao, _
J’te [Q -Ty8;T; ~T18,5, =T 8,5 +T,S, T le” “do
(w=g-t)

A'(w+t:)dw -

4o
s ) )
Joe [Q =T 89 =T 8ol y =TS, #1585 T ple




and thus
t Foo rt

= = “+
e

from which we conclude that I
o0

e

At

r
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A't

A similar result holds for Tz.

ducing scaling TL = dfé, o > 0 and setting Ki = Fi, we have (2.32).

Intro-
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APPENDIX D
PROOF OF 2.36
. ;' Ft; 1 ‘ ']. At . ]
It is easy to see that !le” ) < T |T ™| Vle' "||. Let t > O and
r ) '
i J]_
J 0
2
bl
} L .
, | ;
( 0 Jki ;
L y i
t . - . = 4
where Ji s are the Jordan blocks of dimension MyseeesM (m1 + ...+ m n). ]
Let
— 9 m,~-1 " {
- R L
1! 2! (mi-l)!
Jit ) Kit ) At L
e = e A = e .
l ’
i
0 |
1 3
— - !
Then !
L -
ey max lle "ol =M max ol
i=1, K i=1, 'k

We have 3




Jsup gl 5 sup ([l +ellT Fy -

i1 x=1
=1+t sup Hpxl=1+c¢supild &l =1+ ¢ln,l
2 2., v gs1
Xt tx =1 [
2
For S; we have
R
2! 2.3 777 2...(i-1)
5 - : -
1
0
- L l B
- — _ ]
.t i-3
3 Tt 3.--(i‘l) 7z : N
, ot = !
t i Q. o= - .
5 'i b2 Al j
= I+ 0 =1+ i ' |
i !
: 0 . 0 ’ 0 i
' L L __] L A
0 0
— ' —

We have again
|y — t pung
BARRE N
- and thus

. t =
z a1 =1+ £+ 8-

Continuing similarly we end up with
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‘ 1 < -t— -t— —t—‘ _E_\ =
lajll s 1+ e za+ S QD AT )
2 t:i.-l

= SR S £
Lyttt T

Therefore, if m = max(ml, cee ’mk)

Ft; -1, At -1, At t ]
el = Jriiiz lle™ s MTNT™ e ™ b gp o 4 25D PGP
‘ Direct calculation gives (recall K < 0)
+e +o = m-1 ] +o m-1 it]
W Fty2 2 2t .2 2 - 2\t t _
J.o e e = o joe [E (jf)] e = p \Jdo . lfj!dt_
j=0 i,3=0




APPENDIX E

SUFFICIENT CONDITIONS FOR ASSUMPTION (A)

In this Appendix we give certain conditions under which Assumption

(A) (Section 3.2) holds.

Lemma E.l: Let Uz be a subset of U (see (3.1)), defined as

Uz = {ug U!u(x,t) = C(t)x + D(t), where the m, x 0 matrix C( )
and the m; X 1 vector D(t) are piecewise continuous (E.1)

functions of time over [t ,t.]3.

Then it holds:

inf J, (u,v) 2 inf J. (u,v) =z inf J, (u,v) = inf J, (u,v)
1 1 1 1 (E.2)

uEUz,VETu ug U, v€Tu ué U, véT'u uEUr vET'u.

Proof: The inequalities follow from the facts ULC‘U’ TuC T'u Y u€U. The
last equality is obvious in the light of (3.26) and the proof of Theorem 3.2.

An immediate conclusion of Lemma E.1 is that if

inf Jl(u,v) = inf Jl(u,v)
(E.3)

uEU,, v&€Tu u€U,, vET'u

*
holds, then Assumption (A) holds (with UN = U). For (E.3) to hold, it

suffices that the first order necessary conditions for the follower's
problem are also sufficient, for each fixed u¢ UZ' More specifically, for

fixed C(t), D(t) as in definition (E.1) , we consider the problem




minimize h(x(t;)) + [ MG, c(E)x+D(E),v,t)dt

t
o]

(€.4)
subject to: VvEV

x = £(,C(E)x+D(t),v,8), =x(t) = x_, t€[t,t.]

and seek conditions under which the first order necessary conditions for an
optimal v* for problem (E.4) (see (3.10-2)-(3.10-4)) are also sufficient. Such
conditions can be found in Chapter 5-2 of [39). We formalize this discussion
in the following Proposition.

Proposition E.l: If for each u€ U,, the first order necessary conditions

2
(3.10-2)-(3.10-4) for problem (E.4) are also sufficient, then Assumption (A)

holds.

The discussion in the present Appendix generalizes clearly to the
case where each ui depends on hi(x,t) instead of x and to the case where
different UL'S are considered; see for example Proposition 3.1(ii).

As an example where Proposition E.l can be applied, we comsider

the linear quadratic game of Section 3. Then, Theorem 5, p. 341

of {39] in conjunction with Proposition E.l1 yield that if Q2 =0, Ry > 0,

= 0 then Assumption (A) holds.

R., 20, K

2f

21
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APPENDIX F

PROOF OF THEOREM 3.1

Proof of Theorem 3.1: Let g=0 w.l.o.g. (see [35]). Consider a function

PEU, ©= G@l,...,wm) which has the same continuity and differentiability

properties as u*. Such a ¢ will be called admissible. Using the known
theorems on the dependence of solutions of differential equations on
parameters, we conclude that for €€R, ¢ sufficiently small, u* +cu gives
rise to a trajectory [ (x(e,t),t)|t¢ [to’tf]}’ x(0,t) = x*(t), and that

. 1 . , .
x(¢,t) is in C” w.r. to ¢. Direct calculation yields

- d ox(e,t), _- moi i ! 3x(e,t)
e ¢ de ) &x'+(uk+€wx)fu.+i§1(uxx+e®xx)fi] T 3e
- m I3 3
+E'o+ T EV ntet, , 2x(t) =0 (F.1)
u'  i=171 x i de t=t
y : o
We set
z(t) = 2x(L6) (F.2)
ce e—O
Y q; i
Aft) = £ +u f + Zl[v hiu i iV h +§1uJVxxh £, ]p (F.3)
y Y
. 1
B () = £ | (F.4)
i ) i . _
Bz(t) = fiVxh , i=1,...,m (F.5)
where A, Bl’ B; are evaluated at t, x*, u¥, U: and, thus, for €==0,(F;l) can

be written as

z = Az+B1©+ z Bz@ i z(t))=0. (F.6)

For fixed © we consider

J(e) = J(u+¢co).

e e Y
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-= L 1 * . .
Since J(e) is in C” w.r. to € and u* is a local optimum, it must hold

djga)‘ -0
de €=0 '

Direct calculation yields

t
= f m .
dJ(e) i_ i 1 ox(e,t)
de {{[Lx.+(ux+€¢x)Lu.+i§1(uxx+€Qxx)Li] de

| 0

m P
+L'o+ T L'v pre . ldt (F.7)
‘ u i=1 1 x yl
Setting
‘ T() =L +ul + T v ntd, v hi'+1§ o ahlL
’ R R N R o (F.8)
‘ =L F.9
| be) =1, (F.9)
8y(8) =L pl,  i=1,...m. (F.10)
1x
with T, Al’ A; evaluated at x*, u¥, u:, we conclude from (F.7)-(F¥.10) that
ﬁf D oid (
] r . = 0. F.11)
4 % Iz +A1¢~+i§1A2wyl]dt 0 7
o

Therefore (F.11) must hold for every admissible ®. Let 2(t,T) be the transition ;

matrix of A(t). Let also P(t) denote the vector (wl(hl(x*(t),t),t),...,

. i1 4
8 o™ (x* (£),£),£))" and G (¢) the vector X ELENE)  pyen grom

(F.6) we obtain

t _ m i
2(t) =] 2(e,T)IB (T)F(T) + T B, ()T ()] (F.12)
to i
t € [to,tf]

and substituting in (F.11) we obtain .
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e £ 5 LR S
[ r@f semm@Fe) + I8 ptmler +4ese)
t t i=1

o o]

Boi -
+ Z A (£)9 (t)}dt = 0. (F.13)
i=1 2

Let X[a b] denote the indicator function of [a,b]g;[to,tf]. We can inter-
H
change the order of integration in(F.13) since the integrated quantities are

bounded on [to,tf]x [to,tf] (Fubini's Theorem). Using the fact X(c) =

(t_,b]
X(b) we have successively °
lest]
t. t
£ moy g
[' f T3, B (TF(T) +T(L)3(t,T). T BL ()T ()] -
et ! i=172
-~ o o
te tg
= T X(t) drdt = T [j' r‘(t)@(t,T)dt]Bl(‘Y)@-(T)dT +
! [T,tfl '-t T
AA“ o
m bt ntf i
i + [ I (8)3(t,T)dt]B,(T)F (T)dr. (F.14)
1 i=l ¢t T
4 Q
By introducing
7
p'(r) = [ T(t)a(t,m)dr (F.15)
T
(F.13) can be written as
e = n o f i i
ft [p' (T)B (1) +a(m)IP(T) + 121{ [p' (T)By(T) +8,(T)]
[ [o]
. ﬁi(T)dT = Q. (F.16)

Applying Lemma 3.1 to (T.16), we obtain

p' (T)B, (T) +4,(r) =0, on [to,tf] (F.17)
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p'(MBy(T) +45(T) = 0 on [,z (F.18)

£
Using (F.4), (F.5) and (F.9), (F.10) in (F.17), (F.18) we have equivalently 1
(3.20) and (3.21). Differentiation of (F.15) and use of (F.3) and (F.8) give

the equivalent to (F.15)
q.
m 1 3 :
. i
p = Lx+fxp +i§1 j’i?lu}v hj (Li+fip)

p(ty) = 0.

The assumption g=0, is removed in the known wav, resulting in (3.22). c

e et SeBarmea et i} e -




148

APPENDIX G

PROOF OF THEOREM 4.1

Proof of Theorem 4.1: Consider the functions

n
HI:R XCnXL“,m-‘Cn f
. .
Hy : RO XC XL =Ly
: (G.1)
H, : R"XC_ XL _ —~R"
3 n ®,m
n
J : R X Cn X I..m’m R
defined for (S,x,u) € R® X Cy X Lo by
t t
H, (5,%,0) (8) =x(®) - [ amxmar - fs(f)u(f)dw-xo
t ty
e e
Hy(,x,0)(8) = [ [4.7(e,0)Ix(s) + [ (47 (e,8)Tu(s) - q(©)
tO to
te te (G.2)
Hy(E%,0) = § - x5 - [ A(Mx(Mdr - [ B(Mu(nar
t:o & }
te
JExw = 3 (F'FL+ [ & (OQEX(E) + u' (©R(Eu(E))dt]
t
[o]

Clearly, Hl, H3, and J are well defined. To show that HZ is well defined

e

it suffices to show that if ué€L then _]‘ [d M, (t,s)Iu(s) €L, | .
o, m e s 1 l,k
)

Let u€0y N ‘\un = M., Then there exists a

®©, m L,

@
sequence {ul of continuous functions u :[to,tf] -Rm,a: u (&) = u(t)
n n=1 n n

a.e. and |u (t), £M+1 Vte[to,tf],"fn, (see Theorem 3, page 106 in
n
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te

1491, y_(v) = r [a.0,(¢,8)]u_(s) is measurable, lyn(t)l S (@¢)m, (t)

B

t

)

and thus ynGL1 g Simce u —wua.e., by Egoroff's Theorem we have that!
>

¥ ¢>0, U'A(A;) - 0 as n~ +® where A:x=[s s f[to,tf],lun(s)'u(s)l >el.

It holds
te i
'yn(t)'{ [dN) (e,831us)| = U; [a.N; (t,8)] (u ()-us))] < !}f; |+ |fc|
(o] (o] n An
< e-cl(t)+(2M+l)c1(t)u£(A;).
e
Since ¢, is finite a.e., letting n—+« we obtain !lim yn(t) -{ [dsnl(t,s)]u(s)l

< e.cl(t), a.e. in tE[to,tf] where lim yn(t) stands for eitherolimsup or

liminf. Since this inequality holds Ve >0 we conclude that
it
{ (a0 C,8) us) = Limy (t)  a.e. in fe e ). (6.3)
o
Since Iyn(t)! < (M-l-l)cl(t) and (A 3) holds, we conclude by Lebesgues theorem
e
{ [dsﬂl(t,s)]u(s) € Ll,k'
)

that

Problem (P) can be written equivalently

minimize J(€,x,u)
(G.4)
subject to Hi(g,x,u) =0, 1i=1,2,3

n
(§,x,u) ER X C_ X Lom = O

By Theorem 1, page 220 in [50] we conclude that a sufficient condition for

(E*,x*,u*) to solve (G.4) is the existence of a (¥,\,k) € (C:,L R%)*such that

1,k’

1 Wy denotes Lebesgue measure on [to,tf] .
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IE*xx, ) +CHy € xov ) + (1, €%, 0%, u) 1) +(Hy (§%,%%,u%), 1)

< JG) +(Hy @),0) +(H, @) 2) +(Hy @),k TweQ. (.5)

Since the function J(W) =J(w) +(_Hl W),u) +<H2 @), +<H3(w),k> is convex
and Frechet differentiable a necessary and sufficient condition for (G.5) to
hold is that
dJ (€%, x*,u*; C,h,v) = 0
n (G.6)
V(G,h,v) ER X C X Ly

where dJ denotes the Frechet differential Straightforward calculations result

in the following explicit form for (G.6).

G'F+x')C=0 TEER (G.7)
te te C¢ tg
I xr@een@de+ Ta' @ Iae) +f 2 @) § 10 (e,8)Ih(s))de
tO tO tO tO ’
t R .
£ £
+[ W AR @) k' [TA(E)h(e)de=0  VhEC  (G.8)
t:O t0
tf tf tf tf
[ ©RE v s+ w(©B@)Iv(Ode+[ v(e) ([N (k,5)]v(s))de
tO tO tO tO
¥
-k'{ B(t)v(e)de=0,  ¥vEL,_ . (6.9)
o

Use of the unsymmetric Fubini theorem in [47] yields

tf tf tf tf

RO [d.0(e,)h(s))dt = [ [dsd A ()T (t,s)de)]h(s) (G.10)
t to to t

X Y te  f¢

JATEY( TN, (e,9)]v(s)de = [ [ds 1" (0)7 (8,8)de)]v(s). (G.11)
t t t t

] o o)

Using (G.10),(G.11) in (G.8),(G.9) we obtain the sufficiency conditions (4.41),

(4.42) wherein we substituted u by w-k, and k by -FE* = -Fx(tf). c
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